mirror of
https://github.com/VolmitSoftware/Iris.git
synced 2025-12-29 20:19:06 +00:00
M
This commit is contained in:
@@ -1,219 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* Generates noise using the "classic" perlin generator
|
||||
*
|
||||
* @see SimplexNoiseC "Improved" and faster version with slighly
|
||||
* different results
|
||||
*/
|
||||
public class BasePerlinNoiseGenerator extends NoiseGenerator
|
||||
{
|
||||
protected static final int grad3[][] = {{1, 1, 0}, {-1, 1, 0}, {1, -1, 0}, {-1, -1, 0}, {1, 0, 1}, {-1, 0, 1}, {1, 0, -1}, {-1, 0, -1}, {0, 1, 1}, {0, -1, 1}, {0, 1, -1}, {0, -1, -1}};
|
||||
private static final BasePerlinNoiseGenerator instance = new BasePerlinNoiseGenerator();
|
||||
|
||||
protected BasePerlinNoiseGenerator()
|
||||
{
|
||||
int p[] = {151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225, 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148, 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32, 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175, 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122, 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54, 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169, 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64, 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212, 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213, 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9, 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104, 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241, 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157, 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93, 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180};
|
||||
|
||||
for(int i = 0; i < 512; i++)
|
||||
{
|
||||
perm[i] = p[i & 255];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a seeded perlin noise generator for the given seed
|
||||
*
|
||||
* @param seed
|
||||
* Seed to construct this generator for
|
||||
*/
|
||||
public BasePerlinNoiseGenerator(long seed)
|
||||
{
|
||||
this(new Random(seed));
|
||||
}
|
||||
|
||||
/**
|
||||
* Creates a seeded perlin noise generator with the given Random
|
||||
*
|
||||
* @param rand
|
||||
* Random to construct with
|
||||
*/
|
||||
public BasePerlinNoiseGenerator(Random rand)
|
||||
{
|
||||
offsetX = rand.nextDouble() * 256;
|
||||
offsetY = rand.nextDouble() * 256;
|
||||
offsetZ = rand.nextDouble() * 256;
|
||||
|
||||
for(int i = 0; i < 256; i++)
|
||||
{
|
||||
perm[i] = rand.nextInt(256);
|
||||
}
|
||||
|
||||
for(int i = 0; i < 256; i++)
|
||||
{
|
||||
int pos = rand.nextInt(256 - i) + i;
|
||||
int old = perm[i];
|
||||
|
||||
perm[i] = perm[pos];
|
||||
perm[pos] = old;
|
||||
perm[i + 256] = perm[i];
|
||||
}
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 1D unseeded perlin noise for the given coordinates
|
||||
* in 1D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public static double getNoise(double x)
|
||||
{
|
||||
return instance.noise(x);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 2D unseeded perlin noise for the given coordinates
|
||||
* in 2D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @param y
|
||||
* Y coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public static double getNoise(double x, double y)
|
||||
{
|
||||
return instance.noise(x, y);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 3D unseeded perlin noise for the given coordinates
|
||||
* in 3D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @param y
|
||||
* Y coordinate
|
||||
* @param z
|
||||
* Z coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public static double getNoise(double x, double y, double z)
|
||||
{
|
||||
return instance.noise(x, y, z);
|
||||
}
|
||||
|
||||
/**
|
||||
* Gets the singleton unseeded instance of this generator
|
||||
*
|
||||
* @return Singleton
|
||||
*/
|
||||
public static BasePerlinNoiseGenerator getInstance()
|
||||
{
|
||||
return instance;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double noise(double x, double y, double z)
|
||||
{
|
||||
x += offsetX;
|
||||
y += offsetY;
|
||||
z += offsetZ;
|
||||
|
||||
int floorX = floor(x);
|
||||
int floorY = floor(y);
|
||||
int floorZ = floor(z);
|
||||
|
||||
// Find unit cube containing the point
|
||||
int X = floorX & 255;
|
||||
int Y = floorY & 255;
|
||||
int Z = floorZ & 255;
|
||||
|
||||
// Get relative xyz coordinates of the point within the cube
|
||||
x -= floorX;
|
||||
y -= floorY;
|
||||
z -= floorZ;
|
||||
|
||||
// Compute fade curves for xyz
|
||||
double fX = fade(x);
|
||||
double fY = fade(y);
|
||||
double fZ = fade(z);
|
||||
|
||||
// Hash coordinates of the cube corners
|
||||
int A = perm[X] + Y;
|
||||
int AA = perm[A] + Z;
|
||||
int AB = perm[A + 1] + Z;
|
||||
int B = perm[X + 1] + Y;
|
||||
int BA = perm[B] + Z;
|
||||
int BB = perm[B + 1] + Z;
|
||||
|
||||
return lerp(fZ, lerp(fY, lerp(fX, grad(perm[AA], x, y, z), grad(perm[BA], x - 1, y, z)), lerp(fX, grad(perm[AB], x, y - 1, z), grad(perm[BB], x - 1, y - 1, z))), lerp(fY, lerp(fX, grad(perm[AA + 1], x, y, z - 1), grad(perm[BA + 1], x - 1, y, z - 1)), lerp(fX, grad(perm[AB + 1], x, y - 1, z - 1), grad(perm[BB + 1], x - 1, y - 1, z - 1))));
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 1D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public static double getNoise(double x, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return instance.noise(x, octaves, frequency, amplitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 2D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public static double getNoise(double x, double y, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return instance.noise(x, y, octaves, frequency, amplitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 3D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param z
|
||||
* Z-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public static double getNoise(double x, double y, double z, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return instance.noise(x, y, z, octaves, frequency, amplitude);
|
||||
}
|
||||
}
|
||||
@@ -1,223 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
public class CNG
|
||||
{
|
||||
public static long hits = 0;
|
||||
public static long creates = 0;
|
||||
public static final NoiseInjector ADD = (s, v) -> new double[] {s + v, 1};
|
||||
public static final NoiseInjector SRC_SUBTRACT = (s, v) -> new double[] {s - v < 0 ? 0 : s - v, -1};
|
||||
public static final NoiseInjector DST_SUBTRACT = (s, v) -> new double[] {v - s < 0 ? 0 : s - v, -1};
|
||||
public static final NoiseInjector MULTIPLY = (s, v) -> new double[] {s * v, 0};
|
||||
public static final NoiseInjector MAX = (s, v) -> new double[] {Math.max(s, v), 0};
|
||||
public static final NoiseInjector MIN = (s, v) -> new double[] {Math.min(s, v), 0};
|
||||
public static final NoiseInjector SRC_MOD = (s, v) -> new double[] {s % v, 0};
|
||||
public static final NoiseInjector SRC_POW = (s, v) -> new double[] {Math.pow(s, v), 0};
|
||||
public static final NoiseInjector DST_MOD = (s, v) -> new double[] {v % s, 0};
|
||||
public static final NoiseInjector DST_POW = (s, v) -> new double[] {Math.pow(v, s), 0};
|
||||
private double freq;
|
||||
private double amp;
|
||||
private double scale;
|
||||
private double fscale;
|
||||
private KList<CNG> children;
|
||||
private CNG fracture;
|
||||
private SNG generator;
|
||||
private final double opacity;
|
||||
private NoiseInjector injector;
|
||||
private RNG rng;
|
||||
private int oct;
|
||||
private double patch;
|
||||
private double up;
|
||||
private double down;
|
||||
private double power;
|
||||
|
||||
public static CNG signature(RNG rng)
|
||||
{
|
||||
//@builder
|
||||
return new CNG(rng.nextParallelRNG(17), 1D, 3)
|
||||
.scale(0.012)
|
||||
.fractureWith(new CNG(rng.nextParallelRNG(18), 1, 2)
|
||||
.scale(0.018)
|
||||
.child(new CNG(rng.nextParallelRNG(19), 1, 2)
|
||||
.scale(0.1))
|
||||
.fractureWith(new CNG(rng.nextParallelRNG(20), 1, 2)
|
||||
.scale(0.15), 24), 44).down(0.3).patch(2.5);
|
||||
//@done
|
||||
}
|
||||
|
||||
public CNG(RNG random)
|
||||
{
|
||||
this(random, 1);
|
||||
}
|
||||
|
||||
public CNG(RNG random, int octaves)
|
||||
{
|
||||
this(random, 1D, octaves);
|
||||
}
|
||||
|
||||
public CNG(RNG random, double opacity, int octaves)
|
||||
{
|
||||
creates += octaves;
|
||||
this.oct = octaves;
|
||||
this.rng = random;
|
||||
power = 1;
|
||||
freq = 1;
|
||||
amp = 1;
|
||||
scale = 1;
|
||||
patch = 1;
|
||||
fscale = 1;
|
||||
fracture = null;
|
||||
generator = new SNG(random);
|
||||
this.opacity = opacity;
|
||||
this.injector = ADD;
|
||||
}
|
||||
|
||||
public CNG child(CNG c)
|
||||
{
|
||||
if(children == null)
|
||||
{
|
||||
children = new KList<>();
|
||||
}
|
||||
|
||||
children.add(c);
|
||||
return this;
|
||||
}
|
||||
|
||||
@Deprecated
|
||||
public RNG nextRNG()
|
||||
{
|
||||
return getRNG().nextRNG();
|
||||
}
|
||||
|
||||
public RNG getRNG()
|
||||
{
|
||||
return rng;
|
||||
}
|
||||
|
||||
public CNG fractureWith(CNG c, double scale)
|
||||
{
|
||||
fracture = c;
|
||||
fscale = scale;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG scale(double c)
|
||||
{
|
||||
scale = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG freq(double c)
|
||||
{
|
||||
freq = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG amp(double c)
|
||||
{
|
||||
amp = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG patch(double c)
|
||||
{
|
||||
patch = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG up(double c)
|
||||
{
|
||||
up = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG down(double c)
|
||||
{
|
||||
down = c;
|
||||
return this;
|
||||
}
|
||||
|
||||
public CNG injectWith(NoiseInjector i)
|
||||
{
|
||||
injector = i;
|
||||
return this;
|
||||
}
|
||||
|
||||
public int fit(int min, int max, double... dim)
|
||||
{
|
||||
if(min == max)
|
||||
{
|
||||
return min;
|
||||
}
|
||||
|
||||
double noise = noise(dim);
|
||||
|
||||
return (int) Math.round(IrisInterpolation.lerp(min, max, noise));
|
||||
}
|
||||
|
||||
public int fitDouble(double min, double max, double... dim)
|
||||
{
|
||||
if(min == max)
|
||||
{
|
||||
return (int) Math.round(min);
|
||||
}
|
||||
|
||||
double noise = noise(dim);
|
||||
|
||||
return (int) Math.round(IrisInterpolation.lerp(min, max, noise));
|
||||
}
|
||||
|
||||
public double fitDoubleD(double min, double max, double... dim)
|
||||
{
|
||||
if(min == max)
|
||||
{
|
||||
return min;
|
||||
}
|
||||
|
||||
double noise = noise(dim);
|
||||
|
||||
return IrisInterpolation.lerp(min, max, noise);
|
||||
}
|
||||
|
||||
public int fitDoubleExponent(double min, double max, double exponent, double... dim)
|
||||
{
|
||||
if(min == max)
|
||||
{
|
||||
return (int) Math.round(min);
|
||||
}
|
||||
|
||||
double noise = noise(dim);
|
||||
|
||||
return (int) Math.round(IrisInterpolation.lerp(min, max, exponent == 1 ? noise : Math.pow(noise, exponent)));
|
||||
}
|
||||
|
||||
public double noise(double... dim)
|
||||
{
|
||||
double f = fracture != null ? (fracture.noise(dim) - 0.5) * fscale : 0D;
|
||||
double x = dim.length > 0 ? dim[0] + f : 0D;
|
||||
double y = dim.length > 1 ? dim[1] - f : 0D;
|
||||
double z = dim.length > 2 ? dim[2] + f : 0D;
|
||||
double n = ((generator.noise(x * scale, y * scale, z * scale, oct, freq, amp, true) / 2D) + 0.5D) * opacity;
|
||||
n = power != 1D ? Math.pow(n, power) : n;
|
||||
double m = 1;
|
||||
hits += oct;
|
||||
if(children == null)
|
||||
{
|
||||
return (n - down + up) * patch;
|
||||
}
|
||||
|
||||
for(CNG i : children)
|
||||
{
|
||||
double[] r = injector.combine(n, i.noise(dim));
|
||||
n = r[0];
|
||||
m += r[1];
|
||||
}
|
||||
|
||||
return ((n / m) - down + up) * patch;
|
||||
}
|
||||
|
||||
public CNG pow(double power)
|
||||
{
|
||||
this.power = power;
|
||||
return this;
|
||||
}
|
||||
}
|
||||
@@ -1,94 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
import com.volmit.iris.util.FastNoise.CellularDistanceFunction;
|
||||
import com.volmit.iris.util.FastNoise.CellularReturnType;
|
||||
import com.volmit.iris.util.FastNoise.NoiseType;
|
||||
|
||||
import lombok.Getter;
|
||||
import lombok.Setter;
|
||||
|
||||
public class CellGenerator
|
||||
{
|
||||
private FastNoise fn;
|
||||
private FastNoise fd;
|
||||
private CNG cng;
|
||||
|
||||
@Getter
|
||||
@Setter
|
||||
private double cellScale;
|
||||
|
||||
@Getter
|
||||
@Setter
|
||||
private double shuffle;
|
||||
|
||||
public CellGenerator(RNG rng)
|
||||
{
|
||||
shuffle = 128;
|
||||
cellScale = 0.73;
|
||||
cng = CNG.signature(rng.nextParallelRNG(3204));
|
||||
RNG rx = rng.nextParallelRNG(8735652);
|
||||
int s = rx.nextInt();
|
||||
fn = new FastNoise(s);
|
||||
fn.SetNoiseType(NoiseType.Cellular);
|
||||
fn.SetCellularReturnType(CellularReturnType.CellValue);
|
||||
fn.SetCellularDistanceFunction(CellularDistanceFunction.Natural);
|
||||
fd = new FastNoise(s);
|
||||
fd.SetNoiseType(NoiseType.Cellular);
|
||||
fd.SetCellularReturnType(CellularReturnType.Distance2Sub);
|
||||
fd.SetCellularDistanceFunction(CellularDistanceFunction.Natural);
|
||||
}
|
||||
|
||||
public float getDistance(double x, double z)
|
||||
{
|
||||
return ((fd.GetCellular((float) ((x * cellScale) + (cng.noise(x, z) * shuffle)), (float) ((z * cellScale) + (cng.noise(z, x) * shuffle)))) + 1f) / 2f;
|
||||
}
|
||||
|
||||
public float getDistance(double x, double y, double z)
|
||||
{
|
||||
return ((fd.GetCellular((float) ((x * cellScale) + (cng.noise(x, y, z) * shuffle)), (float) ((y * cellScale) + (cng.noise(x, y, z) * shuffle)), (float) ((z * cellScale) + (cng.noise(z, y, x) * shuffle)))) + 1f) / 2f;
|
||||
}
|
||||
|
||||
public float getValue(double x, double z, int possibilities)
|
||||
{
|
||||
if(possibilities == 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return ((fn.GetCellular((float) ((x * cellScale) + (cng.noise(x, z) * shuffle)), (float) ((z * cellScale) + (cng.noise(z, x) * shuffle))) + 1f) / 2f) * (possibilities - 1);
|
||||
}
|
||||
|
||||
public float getValue(double x, double y, double z, int possibilities)
|
||||
{
|
||||
if(possibilities == 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return ((fn.GetCellular((float) ((x * cellScale) + (cng.noise(x, z) * shuffle)),
|
||||
|
||||
(float) ((y * 8 * cellScale) + (cng.noise(x, y * 8) * shuffle))
|
||||
|
||||
, (float) ((z * cellScale) + (cng.noise(z, x) * shuffle))) + 1f) / 2f) * (possibilities - 1);
|
||||
}
|
||||
|
||||
public int getIndex(double x, double z, int possibilities)
|
||||
{
|
||||
if(possibilities == 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return (int) Math.round(getValue(x, z, possibilities));
|
||||
}
|
||||
|
||||
public int getIndex(double x, double y, double z, int possibilities)
|
||||
{
|
||||
if(possibilities == 1)
|
||||
{
|
||||
return 0;
|
||||
}
|
||||
|
||||
return (int) Math.round(getValue(x, y, z, possibilities));
|
||||
}
|
||||
}
|
||||
File diff suppressed because it is too large
Load Diff
@@ -1,231 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
/**
|
||||
* Base class for all noise generators
|
||||
*/
|
||||
public abstract class NoiseGenerator
|
||||
{
|
||||
protected final int perm[] = new int[512];
|
||||
protected double offsetX;
|
||||
protected double offsetY;
|
||||
protected double offsetZ;
|
||||
|
||||
/**
|
||||
* Speedy floor, faster than (int)Math.floor(x)
|
||||
*
|
||||
* @param x
|
||||
* Value to floor
|
||||
* @return Floored value
|
||||
*/
|
||||
public static int floor(double x)
|
||||
{
|
||||
return x >= 0 ? (int) x : (int) x - 1;
|
||||
}
|
||||
|
||||
protected static double fade(double x)
|
||||
{
|
||||
return x * x * x * (x * (x * 6 - 15) + 10);
|
||||
}
|
||||
|
||||
protected static double lerp(double x, double y, double z)
|
||||
{
|
||||
return y + x * (z - y);
|
||||
}
|
||||
|
||||
protected static double grad(int hash, double x, double y, double z)
|
||||
{
|
||||
hash &= 15;
|
||||
double u = hash < 8 ? x : y;
|
||||
double v = hash < 4 ? y : hash == 12 || hash == 14 ? x : z;
|
||||
return ((hash & 1) == 0 ? u : -u) + ((hash & 2) == 0 ? v : -v);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 1D noise for the given coordinate in 1D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public double noise(double x)
|
||||
{
|
||||
return noise(x, 0, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 2D noise for the given coordinates in 2D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @param y
|
||||
* Y coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public double noise(double x, double y)
|
||||
{
|
||||
return noise(x, y, 0);
|
||||
}
|
||||
|
||||
/**
|
||||
* Computes and returns the 3D noise for the given coordinates in 3D space
|
||||
*
|
||||
* @param x
|
||||
* X coordinate
|
||||
* @param y
|
||||
* Y coordinate
|
||||
* @param z
|
||||
* Z coordinate
|
||||
* @return Noise at given location, from range -1 to 1
|
||||
*/
|
||||
public abstract double noise(double x, double y, double z);
|
||||
|
||||
/**
|
||||
* Generates noise for the 1D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return noise(x, 0, 0, octaves, frequency, amplitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 1D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @param normalized
|
||||
* If true, normalize the value to [-1, 1]
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, int octaves, double frequency, double amplitude, boolean normalized)
|
||||
{
|
||||
return noise(x, 0, 0, octaves, frequency, amplitude, normalized);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 2D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, double y, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return noise(x, y, 0, octaves, frequency, amplitude);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 2D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @param normalized
|
||||
* If true, normalize the value to [-1, 1]
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, double y, int octaves, double frequency, double amplitude, boolean normalized)
|
||||
{
|
||||
return noise(x, y, 0, octaves, frequency, amplitude, normalized);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 3D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param z
|
||||
* Z-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, double y, double z, int octaves, double frequency, double amplitude)
|
||||
{
|
||||
return noise(x, y, z, octaves, frequency, amplitude, false);
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates noise for the 3D coordinates using the specified number of octaves
|
||||
* and parameters
|
||||
*
|
||||
* @param x
|
||||
* X-coordinate
|
||||
* @param y
|
||||
* Y-coordinate
|
||||
* @param z
|
||||
* Z-coordinate
|
||||
* @param octaves
|
||||
* Number of octaves to use
|
||||
* @param frequency
|
||||
* How much to alter the frequency by each octave
|
||||
* @param amplitude
|
||||
* How much to alter the amplitude by each octave
|
||||
* @param normalized
|
||||
* If true, normalize the value to [-1, 1]
|
||||
* @return Resulting noise
|
||||
*/
|
||||
public double noise(double x, double y, double z, int octaves, double frequency, double amplitude, boolean normalized)
|
||||
{
|
||||
double result = 0;
|
||||
double amp = 1;
|
||||
double freq = 1;
|
||||
double max = 0;
|
||||
|
||||
for(int i = 0; i < octaves; i++)
|
||||
{
|
||||
result += noise(x * freq, y * freq, z * freq) * amp;
|
||||
max += amp;
|
||||
freq *= frequency;
|
||||
amp *= amplitude;
|
||||
}
|
||||
|
||||
if(normalized)
|
||||
{
|
||||
result /= max;
|
||||
}
|
||||
|
||||
return result;
|
||||
}
|
||||
}
|
||||
@@ -1,175 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
public class PerlinNoise extends BasePerlinNoiseGenerator
|
||||
{
|
||||
|
||||
/**
|
||||
* Creates an instance using the given PRNG.
|
||||
*
|
||||
* @param rand
|
||||
* the PRNG used to generate the seed permutation
|
||||
*/
|
||||
public PerlinNoise(Random rand)
|
||||
{
|
||||
offsetX = rand.nextDouble() * 256;
|
||||
offsetY = rand.nextDouble() * 256;
|
||||
offsetZ = rand.nextDouble() * 256;
|
||||
// The only reason why I'm re-implementing the constructor code is that I've
|
||||
// read
|
||||
// on at least 3 different sources that the permutation table should initially
|
||||
// be
|
||||
// populated with indices.
|
||||
// "The permutation table is his answer to the issue of random numbers.
|
||||
// First take an array of decent length, usually 256 values. Fill it
|
||||
// sequentially with each
|
||||
// number in that range: so index 1 gets 1, index 8 gets 8, index 251 gets 251,
|
||||
// etc...
|
||||
// Then randomly shuffle the values so you have a table of 256 random values,
|
||||
// but only
|
||||
// contains the values between 0 and 255."
|
||||
// source: https://code.google.com/p/fractalterraingeneration/wiki/Perlin_Noise
|
||||
for(int i = 0; i < 256; i++)
|
||||
{
|
||||
perm[i] = i;
|
||||
}
|
||||
for(int i = 0; i < 256; i++)
|
||||
{
|
||||
int pos = rand.nextInt(256 - i) + i;
|
||||
int old = perm[i];
|
||||
perm[i] = perm[pos];
|
||||
perm[pos] = old;
|
||||
perm[i + 256] = perm[i];
|
||||
}
|
||||
}
|
||||
|
||||
public static int floor(double x)
|
||||
{
|
||||
int floored = (int) x;
|
||||
return x < floored ? floored - 1 : floored;
|
||||
}
|
||||
|
||||
/**
|
||||
* Generates a rectangular section of this generator's noise.
|
||||
*
|
||||
* @param noise
|
||||
* the output of the previous noise layer
|
||||
* @param x
|
||||
* the X offset
|
||||
* @param y
|
||||
* the Y offset
|
||||
* @param z
|
||||
* the Z offset
|
||||
* @param sizeX
|
||||
* the size on the X axis
|
||||
* @param sizeY
|
||||
* the size on the Y axis
|
||||
* @param sizeZ
|
||||
* the size on the Z axis
|
||||
* @param scaleX
|
||||
* the X scale parameter
|
||||
* @param scaleY
|
||||
* the Y scale parameter
|
||||
* @param scaleZ
|
||||
* the Z scale parameter
|
||||
* @param amplitude
|
||||
* the amplitude parameter
|
||||
* @return {@code noise} with this layer of noise added
|
||||
*/
|
||||
public double[] getNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude)
|
||||
{
|
||||
if(sizeY == 1)
|
||||
{
|
||||
return get2dNoise(noise, x, z, sizeX, sizeZ, scaleX, scaleZ, amplitude);
|
||||
}
|
||||
else
|
||||
{
|
||||
return get3dNoise(noise, x, y, z, sizeX, sizeY, sizeZ, scaleX, scaleY, scaleZ, amplitude);
|
||||
}
|
||||
}
|
||||
|
||||
protected double[] get2dNoise(double[] noise, double x, double z, int sizeX, int sizeZ, double scaleX, double scaleZ, double amplitude)
|
||||
{
|
||||
int index = 0;
|
||||
for(int i = 0; i < sizeX; i++)
|
||||
{
|
||||
double dx = x + offsetX + i * scaleX;
|
||||
int floorX = floor(dx);
|
||||
int ix = floorX & 255;
|
||||
dx -= floorX;
|
||||
double fx = fade(dx);
|
||||
for(int j = 0; j < sizeZ; j++)
|
||||
{
|
||||
double dz = z + offsetZ + j * scaleZ;
|
||||
int floorZ = floor(dz);
|
||||
int iz = floorZ & 255;
|
||||
dz -= floorZ;
|
||||
double fz = fade(dz);
|
||||
// Hash coordinates of the square corners
|
||||
int a = perm[ix];
|
||||
int aa = perm[a] + iz;
|
||||
int b = perm[ix + 1];
|
||||
int ba = perm[b] + iz;
|
||||
double x1 = lerp(fx, grad(perm[aa], dx, 0, dz), grad(perm[ba], dx - 1, 0, dz));
|
||||
double x2 = lerp(fx, grad(perm[aa + 1], dx, 0, dz - 1), grad(perm[ba + 1], dx - 1, 0, dz - 1));
|
||||
noise[index++] += lerp(fz, x1, x2) * amplitude;
|
||||
}
|
||||
}
|
||||
return noise;
|
||||
}
|
||||
|
||||
protected double[] get3dNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude)
|
||||
{
|
||||
int n = -1;
|
||||
double x1 = 0;
|
||||
double x2 = 0;
|
||||
double x3 = 0;
|
||||
double x4 = 0;
|
||||
int index = 0;
|
||||
for(int i = 0; i < sizeX; i++)
|
||||
{
|
||||
double dx = x + offsetX + i * scaleX;
|
||||
int floorX = floor(dx);
|
||||
int ix = floorX & 255;
|
||||
dx -= floorX;
|
||||
double fx = fade(dx);
|
||||
for(int j = 0; j < sizeZ; j++)
|
||||
{
|
||||
double dz = z + offsetZ + j * scaleZ;
|
||||
int floorZ = floor(dz);
|
||||
int iz = floorZ & 255;
|
||||
dz -= floorZ;
|
||||
double fz = fade(dz);
|
||||
for(int k = 0; k < sizeY; k++)
|
||||
{
|
||||
double dy = y + offsetY + k * scaleY;
|
||||
int floorY = floor(dy);
|
||||
int iy = floorY & 255;
|
||||
dy -= floorY;
|
||||
double fy = fade(dy);
|
||||
if(k == 0 || iy != n)
|
||||
{
|
||||
n = iy;
|
||||
// Hash coordinates of the cube corners
|
||||
int a = perm[ix] + iy;
|
||||
int aa = perm[a] + iz;
|
||||
int ab = perm[a + 1] + iz;
|
||||
int b = perm[ix + 1] + iy;
|
||||
int ba = perm[b] + iz;
|
||||
int bb = perm[b + 1] + iz;
|
||||
x1 = lerp(fx, grad(perm[aa], dx, dy, dz), grad(perm[ba], dx - 1, dy, dz));
|
||||
x2 = lerp(fx, grad(perm[ab], dx, dy - 1, dz), grad(perm[bb], dx - 1, dy - 1, dz));
|
||||
x3 = lerp(fx, grad(perm[aa + 1], dx, dy, dz - 1), grad(perm[ba + 1], dx - 1, dy, dz - 1));
|
||||
x4 = lerp(fx, grad(perm[ab + 1], dx, dy - 1, dz - 1), grad(perm[bb + 1], dx - 1, dy - 1, dz - 1));
|
||||
}
|
||||
double y1 = lerp(fy, x1, x2);
|
||||
double y2 = lerp(fy, x3, x4);
|
||||
|
||||
noise[index++] += lerp(fz, y1, y2) * amplitude;
|
||||
}
|
||||
}
|
||||
}
|
||||
return noise;
|
||||
}
|
||||
}
|
||||
@@ -1,214 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
import java.util.function.Function;
|
||||
|
||||
public class PolygonGenerator
|
||||
{
|
||||
private double[] rarity;
|
||||
private CNG[] gen;
|
||||
private int bits;
|
||||
private int possibilities;
|
||||
private boolean useRarity;
|
||||
|
||||
public PolygonGenerator(RNG rng, int possibilities, double scale, int octaves, Function<CNG, CNG> factory)
|
||||
{
|
||||
useRarity = false;
|
||||
bits = 1;
|
||||
this.possibilities = possibilities;
|
||||
|
||||
while(Math.pow(2, bits) <= possibilities)
|
||||
{
|
||||
bits++;
|
||||
}
|
||||
|
||||
bits++;
|
||||
bits = bits > 32 ? 32 : bits;
|
||||
rarity = new double[possibilities];
|
||||
gen = new CNG[bits];
|
||||
|
||||
for(int i = 0; i < bits; i++)
|
||||
{
|
||||
gen[i] = new CNG(rng.nextParallelRNG(2118 + (i * 3305)), 1D, 1).scale(scale / possibilities);
|
||||
gen[i] = factory.apply(gen[i]);
|
||||
}
|
||||
}
|
||||
|
||||
public PolygonGenerator useRarity()
|
||||
{
|
||||
useRarity = true;
|
||||
return this;
|
||||
}
|
||||
|
||||
public void setRarity(int index, double r)
|
||||
{
|
||||
rarity[index] = 1D - Math.pow(0.5, r);
|
||||
}
|
||||
|
||||
public boolean hasBorder(int checks, double distance, double... dims)
|
||||
{
|
||||
int current = getIndex(dims);
|
||||
double ajump = 360D / (double) checks;
|
||||
|
||||
if(dims.length == 2)
|
||||
{
|
||||
for(int i = 0; i < checks; i++)
|
||||
{
|
||||
double dx = M.sin((float) Math.toRadians(ajump * i));
|
||||
double dz = M.cos((float) Math.toRadians(ajump * i));
|
||||
if(current != getIndex((dx * distance) + dims[0], (dz * distance) + dims[1]))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(dims.length == 3)
|
||||
{
|
||||
for(int i = 0; i < checks; i++)
|
||||
{
|
||||
double dx = M.sin((float) Math.toRadians(ajump * i));
|
||||
double dz = M.cos((float) Math.toRadians(ajump * i));
|
||||
double dy = Math.tan(Math.toRadians(ajump * i));
|
||||
if(current != getIndex((dx * distance) + dims[0], (dz * distance) + dims[1], (dy * distance) + dims[2]))
|
||||
{
|
||||
return true;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
public boolean hasBorder3D(int checks, double distance, double... dims)
|
||||
{
|
||||
int current = getIndex(dims);
|
||||
double ajump = 360D / (double) checks;
|
||||
int hit = -1;
|
||||
|
||||
if(dims.length == 3)
|
||||
{
|
||||
for(int i = 0; i < checks; i++)
|
||||
{
|
||||
double dx = M.sin((float) Math.toRadians(ajump * i));
|
||||
double dz = M.cos((float) Math.toRadians(ajump * i));
|
||||
double dy = Math.tan(Math.toRadians(ajump * i));
|
||||
int d = getIndex((dx * distance) + dims[0], (dz * distance) + dims[1], (dy * distance) + dims[2]);
|
||||
if(current != d)
|
||||
{
|
||||
if(hit >= 0 && hit != current && hit != d)
|
||||
{
|
||||
return true;
|
||||
}
|
||||
|
||||
if(hit < 0)
|
||||
{
|
||||
hit = d;
|
||||
}
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
return false;
|
||||
}
|
||||
|
||||
/**
|
||||
* Returns 0.0 to 1.0 where 0.0 is directly on the border of another region and
|
||||
* 1.0 is perfectly in the center of a region
|
||||
*
|
||||
* @param x
|
||||
* the x
|
||||
* @param z
|
||||
* the z
|
||||
* @return the closest neighbor threshold.
|
||||
*/
|
||||
public double getClosestNeighbor(double... dim)
|
||||
{
|
||||
double closest = 0.5;
|
||||
|
||||
for(int i = 0; i < gen.length; i++)
|
||||
{
|
||||
double distance = Math.abs(gen[i].noise(dim) - 0.5);
|
||||
|
||||
if(distance < closest)
|
||||
{
|
||||
closest = distance;
|
||||
}
|
||||
}
|
||||
|
||||
return (closest * 2);
|
||||
}
|
||||
|
||||
public int getIndex(double... dim)
|
||||
{
|
||||
int data = 0;
|
||||
int adjusted = 0;
|
||||
double[] noise = new double[gen.length];
|
||||
|
||||
for(int i = 0; i < gen.length; i++)
|
||||
{
|
||||
data |= (noise[i] = gen[i].noise(dim)) > 0.5 ? i == 0 ? 1 : 1 << i : 0;
|
||||
}
|
||||
|
||||
if(!useRarity)
|
||||
{
|
||||
return data % possibilities;
|
||||
}
|
||||
|
||||
double r = rarity[data % possibilities];
|
||||
|
||||
for(int i = 0; i < gen.length; i++)
|
||||
{
|
||||
adjusted |= noise[i] > r ? i == 0 ? 1 : 1 << i : 0;
|
||||
}
|
||||
|
||||
return adjusted % possibilities;
|
||||
}
|
||||
|
||||
public static class EnumPolygonGenerator<T> extends PolygonGenerator
|
||||
{
|
||||
private T[] choices;
|
||||
|
||||
|
||||
public EnumPolygonGenerator(RNG rng, double scale, int octaves, T[] choices, Function<CNG, CNG> factory)
|
||||
{
|
||||
super(rng, choices.length, scale / (double) choices.length, octaves, factory);
|
||||
this.choices = choices;
|
||||
}
|
||||
|
||||
public EnumPolygonGenerator<T> useRarity()
|
||||
{
|
||||
super.useRarity();
|
||||
return this;
|
||||
}
|
||||
|
||||
@SuppressWarnings("unchecked")
|
||||
public EnumPolygonGenerator(RNG rng, double scale, int octaves, KList<T> c, KMap<T, Double> choiceRarities, Function<CNG, CNG> factory)
|
||||
{
|
||||
super(rng, choiceRarities.size(), scale / (double) choiceRarities.size(), octaves, factory);
|
||||
this.choices = (T[]) c.toArray();
|
||||
int m = 0;
|
||||
|
||||
for(T i : c)
|
||||
{
|
||||
setRarity(m++, choiceRarities.get(i));
|
||||
}
|
||||
}
|
||||
|
||||
public void setRarity(T t, double rarity)
|
||||
{
|
||||
for(int i = 0; i < choices.length; i++)
|
||||
{
|
||||
if(choices[i].equals(t))
|
||||
{
|
||||
setRarity(i, rarity);
|
||||
return;
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
public T getChoice(double... dim)
|
||||
{
|
||||
return choices[getIndex(dim)];
|
||||
}
|
||||
}
|
||||
}
|
||||
@@ -1,63 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
public class RarityCellGenerator<T extends IRare> extends CellGenerator
|
||||
{
|
||||
public RarityCellGenerator(RNG rng)
|
||||
{
|
||||
super(rng);
|
||||
}
|
||||
|
||||
public T get(double x, double z, KList<T> b)
|
||||
{
|
||||
if(b.size() == 0)
|
||||
{
|
||||
return null;
|
||||
}
|
||||
|
||||
if(b.size() == 1)
|
||||
{
|
||||
return b.get(0);
|
||||
}
|
||||
|
||||
KList<T> rarityMapped = new KList<>();
|
||||
boolean o = false;
|
||||
int max = 1;
|
||||
for(T i : b)
|
||||
{
|
||||
if(i.getRarity() > max)
|
||||
{
|
||||
max = i.getRarity();
|
||||
}
|
||||
}
|
||||
|
||||
max++;
|
||||
|
||||
for(T i : b)
|
||||
{
|
||||
for(int j = 0; j < max - i.getRarity(); j++)
|
||||
{
|
||||
if(o = !o)
|
||||
{
|
||||
rarityMapped.add(i);
|
||||
}
|
||||
|
||||
else
|
||||
{
|
||||
rarityMapped.add(0, i);
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
if(rarityMapped.size() == 1)
|
||||
{
|
||||
return rarityMapped.get(0);
|
||||
}
|
||||
|
||||
if(rarityMapped.isEmpty())
|
||||
{
|
||||
throw new RuntimeException("BAD RARITY MAP! RELATED TO: " + b.toString(", or possibly "));
|
||||
}
|
||||
|
||||
return rarityMapped.get(getIndex(x, z, rarityMapped.size()));
|
||||
}
|
||||
}
|
||||
@@ -1,377 +0,0 @@
|
||||
package com.volmit.iris.util;
|
||||
|
||||
import java.util.Random;
|
||||
|
||||
/**
|
||||
* A speed-improved simplex noise algorithm.
|
||||
*
|
||||
* <p>
|
||||
* Based on example code by Stefan Gustavson (stegu@itn.liu.se). Optimisations
|
||||
* by Peter Eastman (peastman@drizzle.stanford.edu). Better rank ordering method
|
||||
* by Stefan Gustavson in 2012.
|
||||
*
|
||||
* <p>
|
||||
* This could be sped up even further, but it's useful as is.
|
||||
*/
|
||||
public class SNG extends PerlinNoise
|
||||
{
|
||||
|
||||
protected static final double SQRT_3 = 1.7320508075688772; // Math.sqrt(3)
|
||||
protected static final double F2 = 0.5 * (SQRT_3 - 1);
|
||||
protected static final double G2 = (3 - SQRT_3) / 6;
|
||||
protected static final double G22 = G2 * 2.0 - 1;
|
||||
protected static final double F3 = 1.0 / 3.0;
|
||||
protected static final double G3 = 1.0 / 6.0;
|
||||
protected static final double G32 = G3 * 2.0;
|
||||
protected static final double G33 = G3 * 3.0 - 1.0;
|
||||
private static Grad[] grad3 = {new Grad(1, 1, 0), new Grad(-1, 1, 0), new Grad(1, -1, 0), new Grad(-1, -1, 0), new Grad(1, 0, 1), new Grad(-1, 0, 1), new Grad(1, 0, -1), new Grad(-1, 0, -1), new Grad(0, 1, 1), new Grad(0, -1, 1), new Grad(0, 1, -1), new Grad(0, -1, -1)};
|
||||
protected final int[] permMod12 = new int[512];
|
||||
|
||||
/**
|
||||
* Creates a simplex noise generator.
|
||||
*
|
||||
* @param rand
|
||||
* the PRNG to use
|
||||
*/
|
||||
public SNG(Random rand)
|
||||
{
|
||||
super(rand);
|
||||
for(int i = 0; i < 512; i++)
|
||||
{
|
||||
permMod12[i] = perm[i] % 12;
|
||||
}
|
||||
}
|
||||
|
||||
public static int floor(double x)
|
||||
{
|
||||
return x > 0 ? (int) x : (int) x - 1;
|
||||
}
|
||||
|
||||
protected static double dot(Grad g, double x, double y)
|
||||
{
|
||||
return g.x * x + g.y * y;
|
||||
}
|
||||
|
||||
protected static double dot(Grad g, double x, double y, double z)
|
||||
{
|
||||
return g.x * x + g.y * y + g.z * z;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected double[] get2dNoise(double[] noise, double x, double z, int sizeX, int sizeY, double scaleX, double scaleY, double amplitude)
|
||||
{
|
||||
int index = 0;
|
||||
for(int i = 0; i < sizeY; i++)
|
||||
{
|
||||
double zin = offsetY + (z + i) * scaleY;
|
||||
for(int j = 0; j < sizeX; j++)
|
||||
{
|
||||
double xin = offsetX + (x + j) * scaleX;
|
||||
noise[index++] += simplex2D(xin, zin) * amplitude;
|
||||
}
|
||||
}
|
||||
return noise;
|
||||
}
|
||||
|
||||
@Override
|
||||
protected double[] get3dNoise(double[] noise, double x, double y, double z, int sizeX, int sizeY, int sizeZ, double scaleX, double scaleY, double scaleZ, double amplitude)
|
||||
{
|
||||
int index = 0;
|
||||
for(int i = 0; i < sizeZ; i++)
|
||||
{
|
||||
double zin = offsetZ + (z + i) * scaleZ;
|
||||
for(int j = 0; j < sizeX; j++)
|
||||
{
|
||||
double xin = offsetX + (x + j) * scaleX;
|
||||
for(int k = 0; k < sizeY; k++)
|
||||
{
|
||||
double yin = offsetY + (y + k) * scaleY;
|
||||
noise[index++] += simplex3D(xin, yin, zin) * amplitude;
|
||||
}
|
||||
}
|
||||
}
|
||||
return noise;
|
||||
}
|
||||
|
||||
@Override
|
||||
public double noise(double xin, double yin)
|
||||
{
|
||||
xin += offsetX;
|
||||
yin += offsetY;
|
||||
return simplex2D(xin, yin);
|
||||
}
|
||||
|
||||
@Override
|
||||
public double noise(double xin, double yin, double zin)
|
||||
{
|
||||
xin += offsetX;
|
||||
yin += offsetY;
|
||||
zin += offsetZ;
|
||||
return simplex3D(xin, yin, zin);
|
||||
}
|
||||
|
||||
private double simplex2D(double xin, double yin)
|
||||
{
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
double s = (xin + yin) * F2; // Hairy factor for 2D
|
||||
int i = floor(xin + s);
|
||||
int j = floor(yin + s);
|
||||
double t = (i + j) * G2;
|
||||
double dx0 = i - t; // Unskew the cell origin back to (x,y) space
|
||||
double dy0 = j - t;
|
||||
double x0 = xin - dx0; // The x,y distances from the cell origin
|
||||
double y0 = yin - dy0;
|
||||
|
||||
// For the 2D case, the simplex shape is an equilateral triangle.
|
||||
|
||||
// Determine which simplex we are in.
|
||||
int i1; // Offsets for second (middle) corner of simplex in (i,j) coords
|
||||
int j1;
|
||||
if(x0 > y0)
|
||||
{
|
||||
i1 = 1; // lower triangle, XY order: (0,0)->(1,0)->(1,1)
|
||||
j1 = 0;
|
||||
}
|
||||
else
|
||||
{
|
||||
i1 = 0; // upper triangle, YX order: (0,0)->(0,1)->(1,1)
|
||||
j1 = 1;
|
||||
}
|
||||
|
||||
// A step of (1,0) in (i,j) means a step of (1-c,-c) in (x,y), and
|
||||
// a step of (0,1) in (i,j) means a step of (-c,1-c) in (x,y), where
|
||||
// c = (3-sqrt(3))/6
|
||||
|
||||
double x1 = x0 - i1 + G2; // Offsets for middle corner in (x,y) unskewed coords
|
||||
double y1 = y0 - j1 + G2;
|
||||
double x2 = x0 + G22; // Offsets for last corner in (x,y) unskewed coords
|
||||
double y2 = y0 + G22;
|
||||
|
||||
// Work out the hashed gradient indices of the three simplex corners
|
||||
int ii = i & 255;
|
||||
int jj = j & 255;
|
||||
int gi0 = permMod12[ii + perm[jj]];
|
||||
int gi1 = permMod12[ii + i1 + perm[jj + j1]];
|
||||
int gi2 = permMod12[ii + 1 + perm[jj + 1]];
|
||||
|
||||
// Calculate the contribution from the three corners
|
||||
double t0 = 0.5 - x0 * x0 - y0 * y0;
|
||||
double n0;
|
||||
if(t0 < 0)
|
||||
{
|
||||
n0 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * dot(grad3[gi0], x0, y0); // (x,y) of grad3 used for 2D gradient
|
||||
}
|
||||
|
||||
double t1 = 0.5 - x1 * x1 - y1 * y1;
|
||||
double n1;
|
||||
if(t1 < 0)
|
||||
{
|
||||
n1 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * dot(grad3[gi1], x1, y1);
|
||||
}
|
||||
|
||||
double t2 = 0.5 - x2 * x2 - y2 * y2;
|
||||
double n2;
|
||||
if(t2 < 0)
|
||||
{
|
||||
n2 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * dot(grad3[gi2], x2, y2);
|
||||
}
|
||||
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to return values in the interval [-1,1].
|
||||
return 70.0 * (n0 + n1 + n2);
|
||||
}
|
||||
|
||||
private double simplex3D(double xin, double yin, double zin)
|
||||
{
|
||||
// Skew the input space to determine which simplex cell we're in
|
||||
double s = (xin + yin + zin) * F3; // Very nice and simple skew factor for 3D
|
||||
int i = floor(xin + s);
|
||||
int j = floor(yin + s);
|
||||
int k = floor(zin + s);
|
||||
double t = (i + j + k) * G3;
|
||||
double dx0 = i - t; // Unskew the cell origin back to (x,y,z) space
|
||||
double dy0 = j - t;
|
||||
double dz0 = k - t;
|
||||
|
||||
// For the 3D case, the simplex shape is a slightly irregular tetrahedron.
|
||||
|
||||
int i1; // Offsets for second corner of simplex in (i,j,k) coords
|
||||
int j1;
|
||||
int k1;
|
||||
int i2; // Offsets for third corner of simplex in (i,j,k) coords
|
||||
int j2;
|
||||
int k2;
|
||||
|
||||
double x0 = xin - dx0; // The x,y,z distances from the cell origin
|
||||
double y0 = yin - dy0;
|
||||
double z0 = zin - dz0;
|
||||
// Determine which simplex we are in
|
||||
if(x0 >= y0)
|
||||
{
|
||||
if(y0 >= z0)
|
||||
{
|
||||
i1 = 1; // X Y Z order
|
||||
j1 = 0;
|
||||
k1 = 0;
|
||||
i2 = 1;
|
||||
j2 = 1;
|
||||
k2 = 0;
|
||||
}
|
||||
else if(x0 >= z0)
|
||||
{
|
||||
i1 = 1; // X Z Y order
|
||||
j1 = 0;
|
||||
k1 = 0;
|
||||
i2 = 1;
|
||||
j2 = 0;
|
||||
k2 = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
i1 = 0; // Z X Y order
|
||||
j1 = 0;
|
||||
k1 = 1;
|
||||
i2 = 1;
|
||||
j2 = 0;
|
||||
k2 = 1;
|
||||
}
|
||||
}
|
||||
else
|
||||
{ // x0<y0
|
||||
if(y0 < z0)
|
||||
{
|
||||
i1 = 0; // Z Y X order
|
||||
j1 = 0;
|
||||
k1 = 1;
|
||||
i2 = 0;
|
||||
j2 = 1;
|
||||
k2 = 1;
|
||||
}
|
||||
else if(x0 < z0)
|
||||
{
|
||||
i1 = 0; // Y Z X order
|
||||
j1 = 1;
|
||||
k1 = 0;
|
||||
i2 = 0;
|
||||
j2 = 1;
|
||||
k2 = 1;
|
||||
}
|
||||
else
|
||||
{
|
||||
i1 = 0; // Y X Z order
|
||||
j1 = 1;
|
||||
k1 = 0;
|
||||
i2 = 1;
|
||||
j2 = 1;
|
||||
k2 = 0;
|
||||
}
|
||||
}
|
||||
|
||||
// A step of (1,0,0) in (i,j,k) means a step of (1-c,-c,-c) in (x,y,z),
|
||||
// a step of (0,1,0) in (i,j,k) means a step of (-c,1-c,-c) in (x,y,z), and
|
||||
// a step of (0,0,1) in (i,j,k) means a step of (-c,-c,1-c) in (x,y,z), where
|
||||
// c = 1/6.
|
||||
double x1 = x0 - i1 + G3; // Offsets for second corner in (x,y,z) coords
|
||||
double y1 = y0 - j1 + G3;
|
||||
double z1 = z0 - k1 + G3;
|
||||
double x2 = x0 - i2 + G32; // Offsets for third corner in (x,y,z) coords
|
||||
double y2 = y0 - j2 + G32;
|
||||
double z2 = z0 - k2 + G32;
|
||||
|
||||
// Work out the hashed gradient indices of the four simplex corners
|
||||
int ii = i & 255;
|
||||
int jj = j & 255;
|
||||
int kk = k & 255;
|
||||
int gi0 = permMod12[ii + perm[jj + perm[kk]]];
|
||||
int gi1 = permMod12[ii + i1 + perm[jj + j1 + perm[kk + k1]]];
|
||||
int gi2 = permMod12[ii + i2 + perm[jj + j2 + perm[kk + k2]]];
|
||||
int gi3 = permMod12[ii + 1 + perm[jj + 1 + perm[kk + 1]]];
|
||||
|
||||
// Calculate the contribution from the four corners
|
||||
double t0 = 0.5 - x0 * x0 - y0 * y0 - z0 * z0;
|
||||
double n0; // Noise contributions from the four corners
|
||||
if(t0 < 0)
|
||||
{
|
||||
n0 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t0 *= t0;
|
||||
n0 = t0 * t0 * dot(grad3[gi0], x0, y0, z0);
|
||||
}
|
||||
|
||||
double t1 = 0.5 - x1 * x1 - y1 * y1 - z1 * z1;
|
||||
double n1;
|
||||
if(t1 < 0)
|
||||
{
|
||||
n1 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t1 *= t1;
|
||||
n1 = t1 * t1 * dot(grad3[gi1], x1, y1, z1);
|
||||
}
|
||||
|
||||
double t2 = 0.5 - x2 * x2 - y2 * y2 - z2 * z2;
|
||||
double n2;
|
||||
if(t2 < 0)
|
||||
{
|
||||
n2 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t2 *= t2;
|
||||
n2 = t2 * t2 * dot(grad3[gi2], x2, y2, z2);
|
||||
}
|
||||
|
||||
double x3 = x0 + G33; // Offsets for last corner in (x,y,z) coords
|
||||
double y3 = y0 + G33;
|
||||
double z3 = z0 + G33;
|
||||
double t3 = 0.5 - x3 * x3 - y3 * y3 - z3 * z3;
|
||||
double n3;
|
||||
if(t3 < 0)
|
||||
{
|
||||
n3 = 0.0;
|
||||
}
|
||||
else
|
||||
{
|
||||
t3 *= t3;
|
||||
n3 = t3 * t3 * dot(grad3[gi3], x3, y3, z3);
|
||||
}
|
||||
|
||||
// Add contributions from each corner to get the final noise value.
|
||||
// The result is scaled to stay just inside [-1,1]
|
||||
return 32.0 * (n0 + n1 + n2 + n3);
|
||||
}
|
||||
|
||||
// Inner class to speed up gradient computations
|
||||
// (array access is a lot slower than member access)
|
||||
private static class Grad
|
||||
{
|
||||
public double x;
|
||||
public double y;
|
||||
public double z;
|
||||
|
||||
Grad(double x, double y, double z)
|
||||
{
|
||||
this.x = x;
|
||||
this.y = y;
|
||||
this.z = z;
|
||||
}
|
||||
}
|
||||
}
|
||||
Reference in New Issue
Block a user