diff --git a/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java b/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java deleted file mode 100644 index 8088090bb..000000000 --- a/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java +++ /dev/null @@ -1,563 +0,0 @@ -/* - * Javolution - Java(TM) Solution for Real-Time and Embedded Systems - * Copyright (C) 2012 - Javolution (http://javolution.org/) - * All rights reserved. - * - * Permission to use, copy, modify, and distribute this software is - * freely granted, provided that this notice is preserved. - */ -package io.akarin.api.internal.utils; - -import java.util.Arrays; -import java.util.BitSet; -import java.util.NoSuchElementException; -import java.util.PrimitiveIterator; -import java.util.Spliterator; -import java.util.Spliterators; -import java.util.stream.IntStream; -import java.util.stream.StreamSupport; - -import io.akarin.api.internal.utils.misc.MathLib; - -/** - * A high-performance bit-set integrated with the collection framework as a set of {@link Index indices} - * and obeying the collection semantic for methods such as {@link #size} (cardinality) or {@link #equals} - * (same set of indices).

- * - * @author Jean-Marie Dautelle - * @version 7.0, September 13, 2015 - */ -public class FastBitSet extends BitSet implements Cloneable, java.io.Serializable { - - private static final long serialVersionUID = 0x700L; // Version. - private static final long[] ALL_CLEARED = new long[0]; - - /** Holds the bits (64 bits per long). */ - private long[] bits; - - /** - * Creates a new bit-set (all bits cleared). - */ - public FastBitSet() { - bits = ALL_CLEARED; - } - - /** - * Performs the logical AND operation on this bit set and the - * given bit set. This means it builds the intersection - * of the two sets. The result is stored into this bit set. - * - * @param that the second bit set. - */ - public final void and(FastBitSet that) { - long[] thatBits = that.toLongArray(); - int n = MathLib.min(this.bits.length, thatBits.length); - for (int i = 0; i < n; i++) { - this.bits[i] &= thatBits[i]; - } - for (int i = n; i < bits.length; i++) { - this.bits[i] = 0L; - } - } - - /** - * Performs the logical AND operation on this bit set and the - * complement of the given bit set. This means it - * selects every element in the first set, that isn't in the - * second set. The result is stored into this bit set. - * - * @param that the second bit set - */ - public final void andNot(FastBitSet that) { - long[] thatBits = that.toLongArray(); - int n = MathLib.min(this.bits.length, thatBits.length); - for (int i = 0; i < n; i++) { - this.bits[i] &= ~thatBits[i]; - } - } - - /** - * Returns the number of bits set to {@code true} (or the size of this - * set). - * - * @return the number of bits being set. - */ - public final int cardinality() { - int sum = 0; - for (int i = 0; i < bits.length; i++) { - sum += MathLib.bitCount(bits[i]); - } - return sum; - } - - public final void clear() { - bits = ALL_CLEARED; - } - - /** - * Removes the specified integer value from this set. That is - * the corresponding bit is cleared. - * - * @param bitIndex a non-negative integer. - * @throws IndexOutOfBoundsException if {@code index < 0} - */ - public final void clear(int bitIndex) { - int longIndex = bitIndex >> 6; - if (longIndex >= bits.length) - return; - bits[longIndex] &= ~(1L << bitIndex); - } - - /** - * Sets the bits from the specified {@code fromIndex} (inclusive) to the - * specified {@code toIndex} (exclusive) to {@code false}. - * - * @param fromIndex index of the first bit to be cleared. - * @param toIndex index after the last bit to be cleared. - * @throws IndexOutOfBoundsException if - * {@code (fromIndex < 0) | (toIndex < fromIndex)} - */ - public final void clear(int fromIndex, int toIndex) { - if ((fromIndex < 0) || (toIndex < fromIndex)) - throw new IndexOutOfBoundsException(); - int i = fromIndex >>> 6; - if (i >= bits.length) - return; // Ensures that i < _length - int j = toIndex >>> 6; - if (i == j) { - bits[i] &= ((1L << fromIndex) - 1) | (-1L << toIndex); - return; - } - bits[i] &= (1L << fromIndex) - 1; - if (j < bits.length) { - bits[j] &= -1L << toIndex; - } - for (int k = i + 1; (k < j) && (k < bits.length); k++) { - bits[k] = 0; - } - } - - @Override - public final FastBitSet clone() { - FastBitSet copy = new FastBitSet(); - copy.bits = this.bits.clone(); - return copy; - } - - //////////////////////////////////////////////////////////////////////////// - // BitSet Operations. - // - - /** - * Sets the bit at the index to the opposite value. - * - * @param bitIndex the index of the bit. - * @throws IndexOutOfBoundsException if {@code bitIndex < 0} - */ - public final void flip(int bitIndex) { - int i = bitIndex >> 6; - ensureCapacity(i + 1); - bits[i] ^= 1L << bitIndex; - } - - /** - * Sets a range of bits to the opposite value. - * - * @param fromIndex the low index (inclusive). - * @param toIndex the high index (exclusive). - * @throws IndexOutOfBoundsException if - * {@code (fromIndex < 0) | (toIndex < fromIndex)} - */ - public final void flip(int fromIndex, int toIndex) { - if ((fromIndex < 0) || (toIndex < fromIndex)) - throw new IndexOutOfBoundsException(); - int i = fromIndex >>> 6; - int j = toIndex >>> 6; - ensureCapacity(j + 1); - if (i == j) { - bits[i] ^= (-1L << fromIndex) & ((1L << toIndex) - 1); - return; - } - bits[i] ^= -1L << fromIndex; - bits[j] ^= (1L << toIndex) - 1; - for (int k = i + 1; k < j; k++) { - bits[k] ^= -1; - } - } - - /** - * Returns {@code true } if the specified integer is in - * this bit set; {@code false } otherwise. - * - * @param bitIndex a non-negative integer. - * @return the value of the bit at the specified index. - * @throws IndexOutOfBoundsException if {@code bitIndex < 0} - */ - public final boolean get(int bitIndex) { - int i = bitIndex >> 6; - return (i >= bits.length) ? false : (bits[i] & (1L << bitIndex)) != 0; - } - - /** - * Returns a new bit set composed of a range of bits from this one. - * - * @param fromIndex the low index (inclusive). - * @param toIndex the high index (exclusive). - * @return a context allocated bit set instance. - * @throws IndexOutOfBoundsException if - * {@code (fromIndex < 0) | (toIndex < fromIndex)} - */ - public final FastBitSet get(int fromIndex, int toIndex) { - if (fromIndex < 0 || fromIndex > toIndex) - throw new IndexOutOfBoundsException(); - FastBitSet bitSet = new FastBitSet(); - int length = MathLib.min(bits.length, (toIndex >>> 6) + 1); - bitSet.bits = new long[length]; - System.arraycopy(bits, 0, bitSet.bits, 0, length); - bitSet.clear(0, fromIndex); - bitSet.clear(toIndex, length << 6); - return bitSet; - } - - /** - * Sets the specified bit, returns true - * if previously set. */ - public final boolean getAndSet(int bitIndex, boolean value) { - int i = bitIndex >> 6; - ensureCapacity(i + 1); - boolean previous = (bits[i] & (1L << bitIndex)) != 0; - if (value) { - bits[i] |= 1L << bitIndex; - } else { - bits[i] &= ~(1L << bitIndex); - } - return previous; - } - - public int getAny(int index) { - return get(index) ? index : null; - } - - /** - * Returns {@code true} if this bit set shares at least one - * common bit with the specified bit set. - * - * @param that the bit set to check for intersection - * @return {@code true} if the sets intersect; {@code false} otherwise. - */ - public final boolean intersects(FastBitSet that) { - long[] thatBits = that.toLongArray(); - int i = MathLib.min(this.bits.length, thatBits.length); - while (--i >= 0) { - if ((bits[i] & thatBits[i]) != 0) return true; - } - return false; - } - - public final boolean isEmpty() { - return size() == 0; - } - - /** - * Returns the logical number of bits actually used by this bit - * set. It returns the index of the highest set bit plus one. - * - *

Note: This method does not return the number of set bits - * which is returned by {@link #size}

- * - * @return the index of the highest set bit plus one. - */ - public final int length() { - trim(); - if (bits.length == 0) return 0; - return (bits.length << 6) - MathLib.numberOfLeadingZeros(bits[bits.length -1]); - } - - /** - * Returns the index of the next {@code false} bit, from the specified bit - * (inclusive). - * - * @param fromIndex the start location. - * @return the first {@code false} bit. - * @throws IndexOutOfBoundsException if {@code fromIndex < 0} - */ - public final int nextClearBit(int fromIndex) { - int offset = fromIndex >> 6; - long mask = 1L << fromIndex; - while (offset < bits.length) { - long h = bits[offset]; - do { - if ((h & mask) == 0) { return fromIndex; } - mask <<= 1; - fromIndex++; - } while (mask != 0); - mask = 1; - offset++; - } - return fromIndex; - } - - /** - * Returns the index of the next {@code true} bit, from the specified bit - * (inclusive). If there is none, {@code -1} is returned. - * The following code will iterates through the bit set:[code] - * for (int i=nextSetBit(0); i >= 0; i = nextSetBit(i+1)) { - * ... - * }[/code] - * - * @param fromIndex the start location. - * @return the first {@code false} bit. - * @throws IndexOutOfBoundsException if {@code fromIndex < 0} - */ - public final int nextSetBit(int fromIndex) { - int offset = fromIndex >> 6; - long mask = 1L << fromIndex; - while (offset < bits.length) { - long h = bits[offset]; - do { - if ((h & mask) != 0) - return fromIndex; - mask <<= 1; - fromIndex++; - } while (mask != 0); - mask = 1; - offset++; - } - return -1; - } - - /** - * Performs the logical OR operation on this bit set and the one specified. - * In other words, builds the union of the two sets. - * The result is stored into this bit set. - * - * @param that the second bit set. - */ - public final void or(FastBitSet that) { - long[] thatBits = (that instanceof FastBitSet) ? ((FastBitSet) that).bits - : that.toLongArray(); - ensureCapacity(thatBits.length); - for (int i = thatBits.length; --i >= 0;) { - bits[i] |= thatBits[i]; - } - } - - /** - * Returns the index of the previous {@code false} bit, - * from the specified bit (inclusive). - * - * @param fromIndex the start location. - * @return the first {@code false} bit. - * @throws IndexOutOfBoundsException if {@code fromIndex < -1} - */ - public final int previousClearBit(int fromIndex) { - int offset = fromIndex >> 6; - long mask = 1L << fromIndex; - while (offset >= 0) { - long h = bits[offset]; - do { - if ((h & mask) == 0) - return fromIndex; - mask >>= 1; - fromIndex--; - } while (mask != 0); - mask = 1L << 63; - offset--; - } - return -1; - } - - /** - * Returns the index of the previous {@code true} bit, from the - * specified bit (inclusive). If there is none, {@code -1} is returned. - * The following code will iterates through the bit set:[code] - * for (int i = length(); (i = previousSetBit(i-1)) >= 0; ) { - * ... - * }[/code] - * - * @param fromIndex the start location. - * @return the first {@code false} bit. - * @throws IndexOutOfBoundsException if {@code fromIndex < -1} - */ - public final int previousSetBit(int fromIndex) { - int offset = fromIndex >> 6; - long mask = 1L << fromIndex; - while (offset >= 0) { - long h = bits[offset]; - do { - if ((h & mask) != 0) - return fromIndex; - mask >>= 1; - fromIndex--; - } while (mask != 0); - mask = 1L << 63; - offset--; - } - return -1; - } - - public int removeAny(int index) { - return getAndSet(index, false) ? index : null; - } - - /** - * Adds the specified integer to this set (corresponding bit is set to - * {@code true}. - * - * @param bitIndex a non-negative integer. - * @throws IndexOutOfBoundsException if {@code bitIndex < 0} - */ - public final void set(int bitIndex) { - int i = bitIndex >> 6; - ensureCapacity(i + 1); - bits[i] |= 1L << bitIndex; - } - - /** - * Sets the bit at the given index to the specified value. - * - * @param bitIndex the position to set. - * @param value the value to set it to. - * @throws IndexOutOfBoundsException if {@code bitIndex < 0} - */ - public final void set(int bitIndex, boolean value) { - if (value) { - set(bitIndex); - } else { - clear(bitIndex); - } - } - - /** - * Sets the bits from the specified {@code fromIndex} (inclusive) to the - * specified {@code toIndex} (exclusive) to {@code true}. - * - * @param fromIndex index of the first bit to be set. - * @param toIndex index after the last bit to be set. - * @throws IndexOutOfBoundsException if - * {@code (fromIndex < 0) | (toIndex < fromIndex)} - */ - public final void set(int fromIndex, int toIndex) { - if ((fromIndex < 0) || (toIndex < fromIndex)) - throw new IndexOutOfBoundsException(); - int i = fromIndex >>> 6; - int j = toIndex >>> 6; - ensureCapacity(j + 1); - if (i == j) { - bits[i] |= (-1L << fromIndex) & ((1L << toIndex) - 1); - return; - } - bits[i] |= -1L << fromIndex; - bits[j] |= (1L << toIndex) - 1; - for (int k = i + 1; k < j; k++) { - bits[k] = -1; - } - } - - /** - * Sets the bits between from (inclusive) and to (exclusive) to the - * specified value. - * - * @param fromIndex the start range (inclusive). - * @param toIndex the end range (exclusive). - * @param value the value to set it to. - * @throws IndexOutOfBoundsException if {@code bitIndex < 0} - */ - public final void set(int fromIndex, int toIndex, boolean value) { - if (value) { - set(fromIndex, toIndex); - } else { - clear(fromIndex, toIndex); - } - } - - public final int size() { - return cardinality(); - } - - /** Returns the minimal length long[] representation of this bitset. - * - * @return Array of longs representing this bitset - */ - public final long[] toLongArray() { - trim(); - return bits; - } - - /** - * Performs the logical XOR operation on this bit set and the one specified. - * In other words, builds the symmetric remainder of the two sets - * (the elements that are in one set, but not in the other). - * The result is stored into this bit set. - * - * @param that the second bit set. - */ - public final void xor(FastBitSet that) { - long[] thatBits = (that instanceof FastBitSet) ? ((FastBitSet) that).bits - : that.toLongArray(); - ensureCapacity(thatBits.length); - for (int i = thatBits.length; --i >= 0;) { - bits[i] ^= thatBits[i]; - } - } - - // Checks capacity. - private void ensureCapacity(int capacity) { - if (bits.length < capacity) { - bits = Arrays.copyOf(bits, MathLib.max(bits.length * 2, capacity)); - } - } - - // Removes trailing zeros. - private void trim() { - int n = bits.length; - while ((--n >= 0) && (bits[n] == 0L)) {} - if (++n != bits.length) { // Trim. - bits = Arrays.copyOf(bits, n); - } - } - - /** - * Returns a stream of indices for which this {@code BitSet} - * contains a bit in the set state. The indices are returned - * in order, from lowest to highest. The size of the stream - * is the number of bits in the set state, equal to the value - * returned by the {@link #cardinality()} method. - * - *

The bit set must remain constant during the execution of the - * terminal stream operation. Otherwise, the result of the terminal - * stream operation is undefined. - * - * @return a stream of integers representing set indices - * @since 1.8 - */ - public IntStream stream() { - class BitSetIterator implements PrimitiveIterator.OfInt { - int next = nextSetBit(0); - - @Override - public boolean hasNext() { - return next != -1; - } - - @Override - public int nextInt() { - if (next != -1) { - int ret = next; - next = nextSetBit(next+1); - return ret; - } else { - throw new NoSuchElementException(); - } - } - } - - return StreamSupport.intStream( - () -> Spliterators.spliterator( - new BitSetIterator(), cardinality(), - Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED), - Spliterator.SIZED | Spliterator.SUBSIZED | - Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED, - false); - } -} \ No newline at end of file diff --git a/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java b/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java deleted file mode 100644 index 0d1333043..000000000 --- a/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java +++ /dev/null @@ -1,1552 +0,0 @@ -/* - * Javolution - Java(TM) Solution for Real-Time and Embedded Systems - * Copyright (C) 2012 - Javolution (http://javolution.org/) - * All rights reserved. - * - * Permission to use, copy, modify, and distribute this software is - * freely granted, provided that this notice is preserved. - */ -package io.akarin.api.internal.utils.misc; - -/** - *

An utility class providing {@link Realtime} implementation of the math library.

- * - * @author Jean-Marie Dautelle - * @version 4.2, January 6, 2007 - */ -public final class MathLib { - - /** - * Default constructor. - */ - private MathLib() { - } - - /** - * Returns the 64 bits value corresponding to the specified unsigned value. - * - * @param value the 32 bits unsigned number. - * @return the corresponding long value. - */ - public static long unsigned(int value) { - return value & 0xFFFFFFFFL; - } - - /** - * Compares two unsigned 32-bits numbers. - * - * @param x the first unsigned 32-bits. - * @param y the second unsigned 32-bits - * @return {@code x < y} - */ - public static boolean unsignedLessThan(int x, int y) { - return (x ^ 0x80000000) < (y ^ 0x80000000); - } - - /** - * Compares two unsigned 64-bits numbers. - * - * @param x the first unsigned 64-bits. - * @param y the second unsigned 64-bits - * @return {@code x < y} - */ - public static boolean unsignedLessThan(long x, long y) { - return (x ^ 0x8000000000000000L) < (y ^ 0x8000000000000000L); - } - - /** - * 32 bits hashing function based on FNV-1 algorithm. - * - * @param intValue the 32 bits number input. - * @return the corresponding hash value. - * @see - * Wikipedia: Fowler–Noll–Vo hash function - */ - public static int hash(int intValue) { - final int FNV_OFFSET = (int) 2166136261L; - final int FNV_PRIME = (int) 16777619L; - int hash = FNV_OFFSET; - for (int i=0; i < 32; i +=8) { - int byteValue = (intValue >> i) & 0xFF; - hash *= FNV_PRIME; - hash ^= byteValue; - } - return hash; - } - - /** - * Interleaves the bits of the two specified integer values (Morton code). - * - * @param x the first positive integer value. - * @param y the second positive integer value. - * @return the corresponding morton code. - * @see - * Wikipedia: Z-order curve - * @see #deinterleave2D(int) - * @throws IllegalArgumentException if any of the arguments is negative - * or greater than 65535. - */ - public static int interleave(int x, int y) { - if (((x | y) & 0xFFFF0000) != 0) - throw new IllegalArgumentException("Overflow"); - return part1by1(x) | (part1by1(y) << 1); - } - - private static int part1by1(int n) { - n &= 0x0000ffff; - n = (n | (n << 8)) & 0x00FF00FF; - n = (n | (n << 4)) & 0x0F0F0F0F; - n = (n | (n << 2)) & 0x33333333; - n = (n | (n << 1)) & 0x55555555; - return n; - } - - /** - * Interleaves the bits of the three specified integer values (Morton code). - * - * @param x the first positive integer value. - * @param y the second positive integer value. - * @param y the third positive integer value. - * @return the corresponding morton code. - * @see - * Wikipedia: Z-order curve - * @see #deinterleave3D(int) - * @throws IllegalArgumentException if any of the arguments is negative - * or greater than 1023. - */ - public static int interleave(int x, int y, int z) { - if (((x | y | z) & 0xFFFFFC00) != 0) - throw new IllegalArgumentException("Overflow"); - return part1by2(x) | (part1by2(y) << 1) | (part1by2(z) << 2); - } - - private static int part1by2(int n) { - n &= 0x000003ff; - n = (n ^ (n << 16)) & 0xff0000ff; - n = (n ^ (n << 8)) & 0x0300f00f; - n = (n ^ (n << 4)) & 0x030c30c3; - n = (n ^ (n << 2)) & 0x09249249; - return n; - } - - /** - * Returns the number of bits in the minimal two's-complement representation of the specified int, - * excluding a sign bit. For positive int, this is equivalent to the number of bits - * in the ordinary binary representation. For negative int, it is equivalent to the number of bits of - * the positive value -(i + 1). - * - * @param i the int value for which the bit length is returned. - * @return the bit length of i. - */ - public static int bitLength(int i) { - return bitLength((long) i); - } - - /** - * Returns the number of bits in the minimal two's-complement representation of the specified long, - * excluding a sign bit. For positive long, this is equivalent to the number of bits - * in the ordinary binary representation. For negative long, it is equivalent to the number of bits - * of the positive value -(l + 1). - * - * @param l the long value for which the bit length is returned. - * @return the bit length of l. - */ - public static int bitLength(long l) { - if (l < 0) l = -(l + 1); - return 64 - numberOfLeadingZeros(l); - } - - /** - * Returns the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary - * representation of the specified 32 bits unsigned value. Returns 32 if the specified value is zero. - * - * @param unsigned the unsigned 32 bits value. - * @return the number of leading zero bits. - */ - public static int numberOfLeadingZeros(int unsigned) { // From Hacker's Delight - if (unsigned == 0) - return 32; - int n = 1; - int x = unsigned; - if (x >>> 16 == 0) { n += 16; x <<= 16; } - if (x >>> 24 == 0) { n += 8; x <<= 8; } - if (x >>> 28 == 0) { n += 4; x <<= 4; } - if (x >>> 30 == 0) { n += 2; x <<= 2; } - n -= x >>> 31; - return n; - } - - /** - * Returns the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary - * representation of the specified 64 bits unsigned value. Returns 64 if the specified value is zero. - * - * @param unsigned the unsigned 64 bits value. - * @return the number of leading zero bits. - */ - public static int numberOfLeadingZeros(long unsigned) { // From Hacker's Delight - if (unsigned == 0) - return 64; - int n = 1; - int x = (int)(unsigned >>> 32); - if (x == 0) { n += 32; x = (int)unsigned; } - if (x >>> 16 == 0) { n += 16; x <<= 16; } - if (x >>> 24 == 0) { n += 8; x <<= 8; } - if (x >>> 28 == 0) { n += 4; x <<= 4; } - if (x >>> 30 == 0) { n += 2; x <<= 2; } - n -= x >>> 31; - return n; - } - - /** - * Returns the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary - * representation of the specified unsigned 32 bits value. Returns 32 if the specified value is zero. - * - * @param unsigned the unsigned 32 bits value. - * @return the number of trailing zero bits. - */ - public static int numberOfTrailingZeros(int unsigned) { // From Hacker's Delight - int x, y; - if (unsigned == 0) return 32; - int n = 31; - x = y = unsigned; - y = x <<16; if (y != 0) { n = n -16; x = y; } - y = x << 8; if (y != 0) { n = n - 8; x = y; } - y = x << 4; if (y != 0) { n = n - 4; x = y; } - y = x << 2; if (y != 0) { n = n - 2; x = y; } - return n - ((x << 1) >>> 31); - } - - /** - * Returns the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary - * representation of the specified unsigned 64 bits value. Returns 64 if the specified value is zero. - * - * @param unsigned the unsigned 64 bits value. - * @return the number of trailing zero bits. - */ - public static int numberOfTrailingZeros(long unsigned) { // From Hacker's Delight - int x, y; - if (unsigned == 0) return 64; - int n = 63; - y = (int)unsigned; if (y != 0) { n = n -32; x = y; } else x = (int)(unsigned>>>32); - y = x <<16; if (y != 0) { n = n -16; x = y; } - y = x << 8; if (y != 0) { n = n - 8; x = y; } - y = x << 4; if (y != 0) { n = n - 4; x = y; } - y = x << 2; if (y != 0) { n = n - 2; x = y; } - return n - ((x << 1) >>> 31); - } - - /** - * Returns the number of one-bits in the two's complement binary representation of the specified 32 bits unsigned - * value. This function is sometimes referred to as the population count. - * - * @param unsigned the 32 bits unsigned value. - * @return the number of one-bits in the two's complement binary representation of the specified value. - */ - public static int bitCount(int unsigned) { // From Hacker's Delight - unsigned = (unsigned & 0x55555555) + ((unsigned >> 1) & 0x55555555); - unsigned = (unsigned & 0x33333333) + ((unsigned >> 2) & 0x33333333); - unsigned = (unsigned & 0x0F0F0F0F) + ((unsigned >> 4) & 0x0F0F0F0F); - unsigned = (unsigned & 0x00FF00FF) + ((unsigned >> 8) & 0x00FF00FF); - unsigned = (unsigned & 0x0000FFFF) + ((unsigned >>16) & 0x0000FFFF); - return unsigned; - } - - /** - * Returns the number of one-bits in the two's complement binary representation of the specified 64 bits unsigned - * value. This function is sometimes referred to as the population count. - * - * @param unsigned the 64 bits unsigned value. - * @return the number of one-bits in the two's complement binary representation of the specified value. - */ - public static int bitCount(long unsigned) { // From Hacker's Delight - unsigned = unsigned - ((unsigned >>> 1) & 0x5555555555555555L); - unsigned = (unsigned & 0x3333333333333333L) - + ((unsigned >>> 2) & 0x3333333333333333L); - unsigned = (unsigned + (unsigned >>> 4)) & 0x0f0f0f0f0f0f0f0fL; - unsigned = unsigned + (unsigned >>> 8); - unsigned = unsigned + (unsigned >>> 16); - unsigned = unsigned + (unsigned >>> 32); - return (int) unsigned & 0x7f; - } - - - /** - * Returns the number of digits of the decimal representation of the specified int value, - * excluding the sign character if any. - * - * @param i the int value for which the digit length is returned. - * @return String.valueOf(i).length() for zero or positive values; - * String.valueOf(i).length() - 1 for negative values. - */ - public static int digitLength(int i) { - if (i >= 0) - return (i >= 100000) ? (i >= 10000000) ? (i >= 1000000000) ? 10 - : (i >= 100000000) ? 9 : 8 : (i >= 1000000) ? 7 : 6 - : (i >= 100) ? (i >= 10000) ? 5 : (i >= 1000) ? 4 : 3 - : (i >= 10) ? 2 : 1; - if (i == Integer.MIN_VALUE) - return 10; // "2147483648".length() - return digitLength(-i); // No overflow possible. - } - - /** - * Returns the number of digits of the decimal representation of the the specified long, - * excluding the sign character if any. - * - * @param l the long value for which the digit length is returned. - * @return String.valueOf(l).length() for zero or positive values; - * String.valueOf(l).length() - 1 for negative values. - */ - public static int digitLength(long l) { - if (l >= 0) - return (l <= Integer.MAX_VALUE) ? digitLength((int) l) - : // At least 10 digits or more. - (l >= 100000000000000L) ? (l >= 10000000000000000L) ? (l >= 1000000000000000000L) ? 19 - : (l >= 100000000000000000L) ? 18 : 17 - : (l >= 1000000000000000L) ? 16 : 15 - : (l >= 100000000000L) ? (l >= 10000000000000L) ? 14 - : (l >= 1000000000000L) ? 13 : 12 - : (l >= 10000000000L) ? 11 : 10; - if (l == Long.MIN_VALUE) - return 19; // "9223372036854775808".length() - return digitLength(-l); - } - - /** - * Returns the closest double representation of the specified long number - * multiplied by a power of two. - * - * @param m the long multiplier. - * @param n the power of two exponent. - * @return m * 2n. - */ - public static double toDoublePow2(long m, int n) { - if (m == 0) - return 0.0; - if (m == Long.MIN_VALUE) - return toDoublePow2(Long.MIN_VALUE >> 1, n + 1); - if (m < 0) - return -toDoublePow2(-m, n); - int bitLength = MathLib.bitLength(m); - int shift = bitLength - 53; - long exp = 1023L + 52 + n + shift; // Use long to avoid overflow. - if (exp >= 0x7FF) - return Double.POSITIVE_INFINITY; - if (exp <= 0) { // Degenerated number (subnormal, assume 0 for bit 52) - if (exp <= -54) - return 0.0; - return toDoublePow2(m, n + 54) / 18014398509481984L; // 2^54 Exact. - } - // Normal number. - long bits = (shift > 0) ? (m >> shift) + ((m >> (shift - 1)) & 1) : // Rounding. - m << -shift; - if (((bits >> 52) != 1) && (++exp >= 0x7FF)) - return Double.POSITIVE_INFINITY; - bits &= 0x000fffffffffffffL; // Clears MSB (bit 52) - bits |= exp << 52; - return Double.longBitsToDouble(bits); - } - - /** - * Returns the closest double representation of the specified long number multiplied by - * a power of ten. - * - * @param m the long multiplier. - * @param n the power of ten exponent. - * @return multiplier * 10n. - **/ - public static double toDoublePow10(long m, int n) { - if (m == 0) - return 0.0; - if (m == Long.MIN_VALUE) - return toDoublePow10(Long.MIN_VALUE / 10, n + 1); - if (m < 0) - return -toDoublePow10(-m, n); - if (n >= 0) { // Positive power. - if (n > 308) - return Double.POSITIVE_INFINITY; - // Works with 4 x 32 bits registers (x3:x2:x1:x0) - long x0 = 0; // 32 bits. - long x1 = 0; // 32 bits. - long x2 = m & MASK_32; // 32 bits. - long x3 = m >>> 32; // 32 bits. - int pow2 = 0; - while (n != 0) { - int i = (n >= POW5_INT.length) ? POW5_INT.length - 1 : n; - int coef = POW5_INT[i]; // 31 bits max. - - if (((int) x0) != 0) - x0 *= coef; // 63 bits max. - if (((int) x1) != 0) - x1 *= coef; // 63 bits max. - x2 *= coef; // 63 bits max. - x3 *= coef; // 63 bits max. - - x1 += x0 >>> 32; - x0 &= MASK_32; - - x2 += x1 >>> 32; - x1 &= MASK_32; - - x3 += x2 >>> 32; - x2 &= MASK_32; - - // Adjusts powers. - pow2 += i; - n -= i; - - // Normalizes (x3 should be 32 bits max). - long carry = x3 >>> 32; - if (carry != 0) { // Shift. - x0 = x1; - x1 = x2; - x2 = x3 & MASK_32; - x3 = carry; - pow2 += 32; - } - } - - // Merges registers to a 63 bits mantissa. - int shift = 31 - MathLib.bitLength(x3); // -1..30 - pow2 -= shift; - long mantissa = (shift < 0) ? (x3 << 31) | (x2 >>> 1) : // x3 is 32 bits. - (((x3 << 32) | x2) << shift) | (x1 >>> (32 - shift)); - return toDoublePow2(mantissa, pow2); - - } else { // n < 0 - if (n < -324 - 20) - return 0.0; - - // Works with x1:x0 126 bits register. - long x1 = m; // 63 bits. - long x0 = 0; // 63 bits. - int pow2 = 0; - while (true) { - - // Normalizes x1:x0 - int shift = 63 - MathLib.bitLength(x1); - x1 <<= shift; - x1 |= x0 >>> (63 - shift); - x0 = (x0 << shift) & MASK_63; - pow2 -= shift; - - // Checks if division has to be performed. - if (n == 0) - break; // Done. - - // Retrieves power of 5 divisor. - int i = (-n >= POW5_INT.length) ? POW5_INT.length - 1 : -n; - int divisor = POW5_INT[i]; - - // Performs the division (126 bits by 31 bits). - long wh = (x1 >>> 32); - long qh = wh / divisor; - long r = wh - qh * divisor; - long wl = (r << 32) | (x1 & MASK_32); - long ql = wl / divisor; - r = wl - ql * divisor; - x1 = (qh << 32) | ql; - - wh = (r << 31) | (x0 >>> 32); - qh = wh / divisor; - r = wh - qh * divisor; - wl = (r << 32) | (x0 & MASK_32); - ql = wl / divisor; - x0 = (qh << 32) | ql; - - // Adjusts powers. - n += i; - pow2 -= i; - } - return toDoublePow2(x1, pow2); - } - } - - private static final long MASK_63 = 0x7FFFFFFFFFFFFFFFL; - - private static final long MASK_32 = 0xFFFFFFFFL; - - private static final int[] POW5_INT = { 1, 5, 25, 125, 625, 3125, 15625, - 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125 }; - - /**/ - - /** - * Returns the closest long representation of the specified double number multiplied - * by a power of two. - * - * @param d the double multiplier. - * @param n the power of two exponent. - * @return d * 2n - * @throws ArithmeticException if the conversion cannot be performed - * (NaN, Infinity or overflow). - **/ - public static long toLongPow2(double d, int n) { - long bits = Double.doubleToLongBits(d); - boolean isNegative = (bits >> 63) != 0; - int exp = ((int) (bits >> 52)) & 0x7FF; - long m = bits & 0x000fffffffffffffL; - if (exp == 0x7FF) - throw new ArithmeticException( - "Cannot convert to long (Infinity or NaN)"); - if (exp == 0) { - if (m == 0) - return 0L; - return toLongPow2(d * 18014398509481984L, n - 54); // 2^54 Exact. - } - m |= 0x0010000000000000L; // Sets MSB (bit 52) - long shift = exp - 1023L - 52 + n; // Use long to avoid overflow. - if (shift <= -64) - return 0L; - if (shift >= 11) - throw new ArithmeticException("Cannot convert to long (overflow)"); - m = (shift >= 0) ? m << shift : (m >> -shift) - + ((m >> -(shift + 1)) & 1); // Rounding. - return isNegative ? -m : m; - } - - /**/ - - /** - * Returns the closest long representation of the specified double number multiplied - * by a power of ten. - * - * @param d the double multiplier. - * @param n the power of two exponent. - * @return d * 10n. - */ - public static long toLongPow10(double d, int n) { - long bits = Double.doubleToLongBits(d); - boolean isNegative = (bits >> 63) != 0; - int exp = ((int) (bits >> 52)) & 0x7FF; - long m = bits & 0x000fffffffffffffL; - if (exp == 0x7FF) - throw new ArithmeticException( - "Cannot convert to long (Infinity or NaN)"); - if (exp == 0) { - if (m == 0) - return 0L; - return toLongPow10(d * 1E16, n - 16); - } - m |= 0x0010000000000000L; // Sets MSB (bit 52) - int pow2 = exp - 1023 - 52; - // Retrieves 63 bits m with n == 0. - if (n >= 0) { - // Works with 4 x 32 bits registers (x3:x2:x1:x0) - long x0 = 0; // 32 bits. - long x1 = 0; // 32 bits. - long x2 = m & MASK_32; // 32 bits. - long x3 = m >>> 32; // 32 bits. - while (n != 0) { - int i = (n >= POW5_INT.length) ? POW5_INT.length - 1 : n; - int coef = POW5_INT[i]; // 31 bits max. - - if (((int) x0) != 0) - x0 *= coef; // 63 bits max. - if (((int) x1) != 0) - x1 *= coef; // 63 bits max. - x2 *= coef; // 63 bits max. - x3 *= coef; // 63 bits max. - - x1 += x0 >>> 32; - x0 &= MASK_32; - - x2 += x1 >>> 32; - x1 &= MASK_32; - - x3 += x2 >>> 32; - x2 &= MASK_32; - - // Adjusts powers. - pow2 += i; - n -= i; - - // Normalizes (x3 should be 32 bits max). - long carry = x3 >>> 32; - if (carry != 0) { // Shift. - x0 = x1; - x1 = x2; - x2 = x3 & MASK_32; - x3 = carry; - pow2 += 32; - } - } - - // Merges registers to a 63 bits mantissa. - int shift = 31 - MathLib.bitLength(x3); // -1..30 - pow2 -= shift; - m = (shift < 0) ? (x3 << 31) | (x2 >>> 1) : // x3 is 32 bits. - (((x3 << 32) | x2) << shift) | (x1 >>> (32 - shift)); - - } else { // n < 0 - - // Works with x1:x0 126 bits register. - long x1 = m; // 63 bits. - long x0 = 0; // 63 bits. - while (true) { - - // Normalizes x1:x0 - int shift = 63 - MathLib.bitLength(x1); - x1 <<= shift; - x1 |= x0 >>> (63 - shift); - x0 = (x0 << shift) & MASK_63; - pow2 -= shift; - - // Checks if division has to be performed. - if (n == 0) - break; // Done. - - // Retrieves power of 5 divisor. - int i = (-n >= POW5_INT.length) ? POW5_INT.length - 1 : -n; - int divisor = POW5_INT[i]; - - // Performs the division (126 bits by 31 bits). - long wh = (x1 >>> 32); - long qh = wh / divisor; - long r = wh - qh * divisor; - long wl = (r << 32) | (x1 & MASK_32); - long ql = wl / divisor; - r = wl - ql * divisor; - x1 = (qh << 32) | ql; - - wh = (r << 31) | (x0 >>> 32); - qh = wh / divisor; - r = wh - qh * divisor; - wl = (r << 32) | (x0 & MASK_32); - ql = wl / divisor; - x0 = (qh << 32) | ql; - - // Adjusts powers. - n += i; - pow2 -= i; - } - m = x1; - } - if (pow2 > 0) - throw new ArithmeticException("Overflow"); - if (pow2 < -63) - return 0; - m = (m >> -pow2) + ((m >> -(pow2 + 1)) & 1); // Rounding. - return isNegative ? -m : m; - } - - /** - * Returns the largest power of 2 that is less than or equal to the the specified positive value. - * - * @param d the double number. - * @return floor(Log2(abs(d))) - * @throws ArithmeticException if d <= 0 or d - * is NaN or Infinity. - **/ - public static int floorLog2(double d) { - if (d <= 0) - throw new ArithmeticException("Negative number or zero"); - long bits = Double.doubleToLongBits(d); - int exp = ((int) (bits >> 52)) & 0x7FF; - if (exp == 0x7FF) - throw new ArithmeticException("Infinity or NaN"); - if (exp == 0) - return floorLog2(d * 18014398509481984L) - 54; // 2^54 Exact. - return exp - 1023; - } - - /** - * Returns the largest power of 10 that is less than or equal to the the specified positive value. - * - * @param d the double number. - * @return floor(Log10(abs(d))) - * @throws ArithmeticException if d <= 0 or d - * is NaN or Infinity. - **/ - public static int floorLog10(double d) { - int guess = (int) (LOG2_DIV_LOG10 * MathLib.floorLog2(d)); - double pow10 = MathLib.toDoublePow10(1, guess); - if ((pow10 <= d) && (pow10 * 10 > d)) - return guess; - if (pow10 > d) - return guess - 1; - return guess + 1; - } - - private static final double LOG2_DIV_LOG10 = 0.3010299956639811952137388947; - - /** - * The natural logarithm. - **/ - public static final double E = 2.71828182845904523536028747135266; - - /** - * The ratio of the circumference of a circle to its diameter. - **/ - public static final double PI = 3.1415926535897932384626433832795; - - /** - * Half the ratio of the circumference of a circle to its diameter. - **/ - public static final double HALF_PI = 1.5707963267948966192313216916398; - - /** - * Twice the ratio of the circumference of a circle to its diameter. - **/ - public static final double TWO_PI = 6.283185307179586476925286766559; - - /** - * Four time the ratio of the circumference of a circle to its diameter. - **/ - public static final double FOUR_PI = 12.566370614359172953850573533118; - - /** - * Holds {@link #PI} * {@link #PI}. - **/ - public static final double PI_SQUARE = 9.8696044010893586188344909998762; - - /** - * The natural logarithm of two. - **/ - public static final double LOG2 = 0.69314718055994530941723212145818; - - /** - * The natural logarithm of ten. - **/ - public static final double LOG10 = 2.3025850929940456840179914546844; - - /** - * The square root of two. - **/ - public static final double SQRT2 = 1.4142135623730950488016887242097; - - /** - * Not-A-Number. - **/ - public static final double NaN = 0.0 / 0.0; - - /** - * Infinity. - **/ - public static final double Infinity = 1.0 / 0.0; - - /**/ - /** - * Converts an angle in degrees to radians. - * - * @param degrees the angle in degrees. - * @return the specified angle in radians. - **/ - public static double toRadians(double degrees) { - return degrees * (PI / 180.0); - } - - /**/ - - /** - * Converts an angle in radians to degrees. - * - * @param radians the angle in radians. - * @return the specified angle in degrees. - **/ - public static double toDegrees(double radians) { - return radians * (180.0 / PI); - } - - /**/ - - /** - * Returns the positive square root of the specified value. - * - * @param x the value. - * @return java.lang.Math.sqrt(x) - **/ - public static double sqrt(double x) { - return Math.sqrt(x); // CLDC 1.1 - } - - /**/ - - /** - * Returns the remainder of the division of the specified two arguments. - * - * @param x the dividend. - * @param y the divisor. - * @return x - round(x / y) * y - **/ - public static double rem(double x, double y) { - double tmp = x / y; - if (MathLib.abs(tmp) <= Long.MAX_VALUE) - return x - MathLib.round(tmp) * y; - else - return NaN; - } - - /**/ - - /** - * Returns the smallest (closest to negative infinity) double value that is not less than the argument - * and is equal to a mathematical integer. - * - * @param x the value. - * @return java.lang.Math.ceil(x) - **/ - public static double ceil(double x) { - return Math.ceil(x); // CLDC 1.1 - } - - /**/ - - /** - * Returns the largest (closest to positive infinity) double value that is not greater than the - * argument and is equal to a mathematical integer. - * - * @param x the value. - * @return java.lang.Math.ceil(x) - **/ - public static double floor(double x) { - return Math.floor(x); // CLDC 1.1 - } - - /**/ - - /** - * Returns the trigonometric sine of the specified angle in radians. - * - * @param radians the angle in radians. - * @return java.lang.Math.sin(radians) - **/ - public static double sin(double radians) { - return Math.sin(radians); // CLDC 1.1 - } - - /**/ - - /** - * Returns the trigonometric cosine of the specified angle in radians. - * - * @param radians the angle in radians. - * @return java.lang.Math.cos(radians) - **/ - public static double cos(double radians) { - return Math.cos(radians); // CLDC 1.1 - } - - /**/ - - /** - * Returns the trigonometric tangent of the specified angle in radians. - * - * @param radians the angle in radians. - * @return java.lang.Math.tan(radians) - **/ - public static double tan(double radians) { - return Math.tan(radians); // CLDC 1.1 - } - - /** - * Returns the arc sine of the specified value, in the range of -pi/2 through pi/2. - * - * @param x the value whose arc sine is to be returned. - * @return the arc sine in radians for the specified value. - **/ - public static double asin(double x) { - if (x < -1.0 || x > 1.0) - return MathLib.NaN; - if (x == -1.0) - return -HALF_PI; - if (x == 1.0) - return HALF_PI; - return MathLib.atan(x / MathLib.sqrt(1.0 - x * x)); - } - - /** - * Returns the arc cosine of the specified value, in the range of 0.0 through pi. - * - * @param x the value whose arc cosine is to be returned. - * @return the arc cosine in radians for the specified value. - **/ - public static double acos(double x) { - return HALF_PI - MathLib.asin(x); - } - - /** - * Returns the arc tangent of the specified value, - * in the range of -pi/2 through pi/2. - * - * @param x the value whose arc tangent is to be returned. - * @return the arc tangent in radians for the specified value. - * @see - * Inverse Tangent -- from MathWorld - **/ - public static double atan(double x) { - return MathLib._atan(x); - } - - /** - * Returns the angle theta such that (x == cos(theta)) && (y == sin(theta)). - * - * @param y the y value. - * @param x the x value. - * @return the angle theta in radians. - * @see Wikipedia: Atan2 - **/ - public static double atan2(double y, double x) { - // From Wikipedia. - if (x > 0) return MathLib.atan(y / x); - if ((y >= 0) && (x < 0)) return MathLib.atan(y / x) + PI; - if ((y < 0) && (x < 0)) return MathLib.atan(y / x) - PI; - if ((y > 0) && (x == 0)) return PI / 2; - if ((y < 0) && (x == 0)) return -PI / 2; - return Double.NaN; // ((y == 0) && (x == 0)) - } - - /** - * Returns the hyperbolic sine of x. - * - * @param x the value for which the hyperbolic sine is calculated. - * @return (exp(x) - exp(-x)) / 2 - **/ - public static double sinh(double x) { - return (MathLib.exp(x) - MathLib.exp(-x)) * 0.5; - } - - /** - * Returns the hyperbolic cosine of x. - * - * @param x the value for which the hyperbolic cosine is calculated. - * @return (exp(x) + exp(-x)) / 2 - **/ - public static double cosh(double x) { - return (MathLib.exp(x) + MathLib.exp(-x)) * 0.5; - } - - /** - * Returns the hyperbolic tangent of x. - * - * @param x the value for which the hyperbolic tangent is calculated. - * @return (exp(2 * x) - 1) / (exp(2 * x) + 1) - **/ - public static double tanh(double x) { - return (MathLib.exp(2 * x) - 1) / (MathLib.exp(2 * x) + 1); - } - - /** - * Returns {@link #E e} raised to the specified power. - * - * @param x the exponent. - * @return ex - * @see - * Exponential Function -- from MathWorld - **/ - public static double exp(double x) { - return MathLib._ieee754_exp(x); - } - - /** - * Returns the natural logarithm (base {@link #E e}) of the specified - * value. - * - * @param x the value greater than 0.0. - * @return the value y such as ey == x - **/ - public static double log(double x) { - return MathLib._ieee754_log(x); - } - - /** - * Returns the decimal logarithm of the specified value. - * - * @param x the value greater than 0.0. - * @return the value y such as 10y == x - **/ - public static double log10(double x) { - return log(x) * INV_LOG10; - } - - private static double INV_LOG10 = 0.43429448190325182765112891891661; - - /** - * Returns the value of the first argument raised to the power of the - * second argument. - * - * @param x the base. - * @param y the exponent. - * @return xy - **/ - public static double pow(double x, double y) { - // Use close approximation (+/- LSB) - if ((x < 0) && (y == (int) y)) - return (((int) y) & 1) == 0 ? pow(-x, y) : -pow(-x, y); - return MathLib.exp(y * MathLib.log(x)); - } - - /** - * Returns the closest int to the specified argument. - * - * @param f the float value to be rounded to a int - * @return the nearest int value. - **/ - public static int round(float f) { - return (int) floor(f + 0.5f); - } - - /**/ - - /** - * Returns the closest long to the specified argument. - * - * @param d the double value to be rounded to a - * long - * @return the nearest long value. - **/ - public static long round(double d) { - return (long) floor(d + 0.5d); - } - - /** - * Returns the absolute value of the specified int argument. - * - * @param i the int value. - * @return i or -i - */ - public static int abs(int i) { - return (i < 0) ? -i : i; - } - - /** - * Returns the absolute value of the specified long argument. - * - * @param l the long value. - * @return l or -l - */ - public static long abs(long l) { - return (l < 0) ? -l : l; - } - - /** - * Returns the absolute value of the specified float argument. - * - * @param f the float value. - * @return f or -f - **/ - public static float abs(float f) { - return (f < 0) ? -f : f; - } - - /** - * Returns the absolute value of the specified double argument. - * - * @param d the double value. - * @return d or -d - **/ - public static double abs(double d) { - return (d < 0) ? -d : d; - } - - /** - * Returns the greater of two int values. - * - * @param x the first value. - * @param y the second value. - * @return the larger of x and y. - */ - public static int max(int x, int y) { - return (x >= y) ? x : y; - } - - /** - * Returns the greater of two long values. - * - * @param x the first value. - * @param y the second value. - * @return the larger of x and y. - */ - public static long max(long x, long y) { - return (x >= y) ? x : y; - } - - /** - * Returns the greater of two float values. - * - * @param x the first value. - * @param y the second value. - * @return the larger of x and y. - **/ - public static float max(float x, float y) { - return (x >= y) ? x : y; - } - - /** - * Returns the greater of two double values. - * - * @param x the first value. - * @param y the second value. - * @return the larger of x and y. - **/ - public static double max(double x, double y) { - return (x >= y) ? x : y; - } - - /** - * Returns the smaller of two int values. - * - * @param x the first value. - * @param y the second value. - * @return the smaller of x and y. - */ - public static int min(int x, int y) { - return (x < y) ? x : y; - } - - /** - * Returns the smaller of two long values. - * - * @param x the first value. - * @param y the second value. - * @return the smaller of x and y. - */ - public static long min(long x, long y) { - return (x < y) ? x : y; - } - - /** - * Returns the smaller of two float values. - * - * @param x the first value. - * @param y the second value. - * @return the smaller of x and y. - **/ - public static float min(float x, float y) { - return (x < y) ? x : y; - } - - /** - * Returns the smaller of two double values. - * - * @param x the first value. - * @param y the second value. - * @return the smaller of x and y. - **/ - public static double min(double x, double y) { - return (x < y) ? x : y; - } - - //////////////////////////////////////////////////////////////////////////// - /* @(#)s_atan.c 1.3 95/01/18 */ - /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - * - */ - - /* atan(x) - * Method - * 1. Reduce x to positive by atan(x) = -atan(-x). - * 2. According to the integer k=4t+0.25 chopped, t=x, the argument - * is further reduced to one of the following intervals and the - * arctangent of t is evaluated by the corresponding formula: - * - * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...) - * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) ) - * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) ) - * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) ) - * [39/16,INF] atan(x) = atan(INF) + atan( -1/t ) - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - static final double atanhi[] = { 4.63647609000806093515e-01, // atan(0.5)hi 0x3FDDAC67, 0x0561BB4F - 7.85398163397448278999e-01, // atan(1.0)hi 0x3FE921FB, 0x54442D18 - 9.82793723247329054082e-01, // atan(1.5)hi 0x3FEF730B, 0xD281F69B - 1.57079632679489655800e+00, // atan(inf)hi 0x3FF921FB, 0x54442D18 - }; - - static final double atanlo[] = { 2.26987774529616870924e-17, // atan(0.5)lo 0x3C7A2B7F, 0x222F65E2 - 3.06161699786838301793e-17, // atan(1.0)lo 0x3C81A626, 0x33145C07 - 1.39033110312309984516e-17, // atan(1.5)lo 0x3C700788, 0x7AF0CBBD - 6.12323399573676603587e-17, // atan(inf)lo 0x3C91A626, 0x33145C07 - }; - - static final double aT[] = { 3.33333333333329318027e-01, // 0x3FD55555, 0x5555550D - -1.99999999998764832476e-01, // 0xBFC99999, 0x9998EBC4 - 1.42857142725034663711e-01, // 0x3FC24924, 0x920083FF - -1.11111104054623557880e-01, // 0xBFBC71C6, 0xFE231671 - 9.09088713343650656196e-02, // 0x3FB745CD, 0xC54C206E - -7.69187620504482999495e-02, // 0xBFB3B0F2, 0xAF749A6D - 6.66107313738753120669e-02, // 0x3FB10D66, 0xA0D03D51 - -5.83357013379057348645e-02, // 0xBFADDE2D, 0x52DEFD9A - 4.97687799461593236017e-02, // 0x3FA97B4B, 0x24760DEB - -3.65315727442169155270e-02, // 0xBFA2B444, 0x2C6A6C2F - 1.62858201153657823623e-02, // 0x3F90AD3A, 0xE322DA11 - }; - - static final double one = 1.0, huge = 1.0e300; - - static double _atan(double x) { - double w, s1, s2, z; - int ix, hx, id; - long xBits = Double.doubleToLongBits(x); - int __HIx = (int) (xBits >> 32); - int __LOx = (int) xBits; - - hx = __HIx; - ix = hx & 0x7fffffff; - if (ix >= 0x44100000) { // if |x| >= 2^66 - if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (__LOx != 0))) - return x + x; // NaN - if (hx > 0) - return atanhi[3] + atanlo[3]; - else - return -atanhi[3] - atanlo[3]; - } - if (ix < 0x3fdc0000) { // |x| < 0.4375 - if (ix < 0x3e200000) // |x| < 2^-29 - if (huge + x > one) - return x; - id = -1; - } else { - x = MathLib.abs(x); - if (ix < 0x3ff30000) // |x| < 1.1875 - if (ix < 0x3fe60000) { // 7/16 <=|x|<11/16 - id = 0; - x = (2.0 * x - one) / (2.0 + x); - } else { // 11/16<=|x|< 19/16 - id = 1; - x = (x - one) / (x + one); - } - else if (ix < 0x40038000) { // |x| < 2.4375 - id = 2; - x = (x - 1.5) / (one + 1.5 * x); - } else { // 2.4375 <= |x| < 2^66 - id = 3; - x = -1.0 / x; - } - } - // end of argument reduction - z = x * x; - w = z * z; - // break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly - s1 = z - * (aT[0] + w - * (aT[2] + w - * (aT[4] + w - * (aT[6] + w * (aT[8] + w * aT[10]))))); - s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9])))); - if (id < 0) - return x - x * (s1 + s2); - else { - z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x); - return (hx < 0) ? -z : z; - } - } - - /**/ - //////////////////////////////////////////////////////////////////////////// - /* @(#)e_log.c 1.3 95/01/18 */ - /* - * ==================================================== - * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. - * - * Developed at SunSoft, a Sun Microsystems, Inc. business. - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - - /* __ieee754_log(x) - * Return the logrithm of x - * - * Method : - * 1. Argument Reduction: find k and f such that - * x = 2^k * (1+f), - * where sqrt(2)/2 < 1+f < sqrt(2) . - * - * 2. Approximation of log(1+f). - * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s) - * = 2s + 2/3 s**3 + 2/5 s**5 + ....., - * = 2s + s*R - * We use a special Reme algorithm on [0,0.1716] to generate - * a polynomial of degree 14 to approximate R The maximum error - * of this polynomial approximation is bounded by 2**-58.45. In - * other words, - * 2 4 6 8 10 12 14 - * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s - * (the values of Lg1 to Lg7 are listed in the program) - * and - * | 2 14 | -58.45 - * | Lg1*s +...+Lg7*s - R(z) | <= 2 - * | | - * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2. - * In order to guarantee error in log below 1ulp, we compute log - * by - * log(1+f) = f - s*(f - R) (if f is not too large) - * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy) - * - * 3. Finally, log(x) = k*ln2 + log(1+f). - * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo))) - * Here ln2 is split into two floating point number: - * ln2_hi + ln2_lo, - * where n*ln2_hi is always exact for |n| < 2000. - * - * Special cases: - * log(x) is NaN with signal if x < 0 (including -INF) ; - * log(+INF) is +INF; log(0) is -INF with signal; - * log(NaN) is that NaN with no signal. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - static final double ln2_hi = 6.93147180369123816490e-01, // 3fe62e42 fee00000 - ln2_lo = 1.90821492927058770002e-10, // 3dea39ef 35793c76 - two54 = 1.80143985094819840000e+16, // 43500000 00000000 - Lg1 = 6.666666666666735130e-01, // 3FE55555 55555593 - Lg2 = 3.999999999940941908e-01, // 3FD99999 9997FA04 - Lg3 = 2.857142874366239149e-01, // 3FD24924 94229359 - Lg4 = 2.222219843214978396e-01, // 3FCC71C5 1D8E78AF - Lg5 = 1.818357216161805012e-01, // 3FC74664 96CB03DE - Lg6 = 1.531383769920937332e-01, // 3FC39A09 D078C69F - Lg7 = 1.479819860511658591e-01; // 3FC2F112 DF3E5244 - - static final double zero = 0.0; - - static double _ieee754_log(double x) { - double hfsq, f, s, z, R, w, t1, t2, dk; - int k, hx, i, j; - int lx; // unsigned - - long xBits = Double.doubleToLongBits(x); - hx = (int) (xBits >> 32); - lx = (int) xBits; - - k = 0; - if (hx < 0x00100000) { // x < 2**-1022 - if (((hx & 0x7fffffff) | lx) == 0) - return -two54 / zero; // log(+-0)=-inf - if (hx < 0) - return (x - x) / zero; // log(-#) = NaN - k -= 54; - x *= two54; // subnormal number, scale up x - xBits = Double.doubleToLongBits(x); - hx = (int) (xBits >> 32); // high word of x - } - if (hx >= 0x7ff00000) - return x + x; - k += (hx >> 20) - 1023; - hx &= 0x000fffff; - i = (hx + 0x95f64) & 0x100000; - xBits = Double.doubleToLongBits(x); - int HIx = hx | (i ^ 0x3ff00000); // normalize x or x/2 - xBits = ((HIx & 0xFFFFFFFFL) << 32) | (xBits & 0xFFFFFFFFL); - x = Double.longBitsToDouble(xBits); - k += (i >> 20); - f = x - 1.0; - if ((0x000fffff & (2 + hx)) < 3) { // |f| < 2**-20 - if (f == zero) - if (k == 0) - return zero; - else { - dk = (double) k; - return dk * ln2_hi + dk * ln2_lo; - } - R = f * f * (0.5 - 0.33333333333333333 * f); - if (k == 0) - return f - R; - else { - dk = (double) k; - return dk * ln2_hi - ((R - dk * ln2_lo) - f); - } - } - s = f / (2.0 + f); - dk = (double) k; - z = s * s; - i = hx - 0x6147a; - w = z * z; - j = 0x6b851 - hx; - t1 = w * (Lg2 + w * (Lg4 + w * Lg6)); - t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7))); - i |= j; - R = t2 + t1; - if (i > 0) { - hfsq = 0.5 * f * f; - if (k == 0) - return f - (hfsq - s * (hfsq + R)); - else - return dk * ln2_hi - - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f); - } else if (k == 0) - return f - s * (f - R); - else - return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f); - } - - /**/ - //////////////////////////////////////////////////////////////////////////// - /* @(#)e_exp.c 1.6 04/04/22 */ - /* - * ==================================================== - * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved. - * - * Permission to use, copy, modify, and distribute this - * software is freely granted, provided that this notice - * is preserved. - * ==================================================== - */ - - /* __ieee754_exp(x) - * Returns the exponential of x. - * - * Method - * 1. Argument reduction: - * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658. - * Given x, find r and integer k such that - * - * x = k*ln2 + r, |r| <= 0.5*ln2. - * - * Here r will be represented as r = hi-lo for better - * accuracy. - * - * 2. Approximation of exp(r) by a special rational function on - * the interval [0,0.34658]: - * Write - * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ... - * We use a special Remes algorithm on [0,0.34658] to generate - * a polynomial of degree 5 to approximate R. The maximum error - * of this polynomial approximation is bounded by 2**-59. In - * other words, - * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5 - * (where z=r*r, and the values of P1 to P5 are listed below) - * and - * | 5 | -59 - * | 2.0+P1*z+...+P5*z - R(z) | <= 2 - * | | - * The computation of exp(r) thus becomes - * 2*r - * exp(r) = 1 + ------- - * R - r - * r*R1(r) - * = 1 + r + ----------- (for better accuracy) - * 2 - R1(r) - * where - * 2 4 10 - * R1(r) = r - (P1*r + P2*r + ... + P5*r ). - * - * 3. Scale back to obtain exp(x): - * From step 1, we have - * exp(x) = 2^k * exp(r) - * - * Special cases: - * exp(INF) is INF, exp(NaN) is NaN; - * exp(-INF) is 0, and - * for finite argument, only exp(0)=1 is exact. - * - * Accuracy: - * according to an error analysis, the error is always less than - * 1 ulp (unit in the last place). - * - * Misc. info. - * For IEEE double - * if x > 7.09782712893383973096e+02 then exp(x) overflow - * if x < -7.45133219101941108420e+02 then exp(x) underflow - * - * Constants: - * The hexadecimal values are the intended ones for the following - * constants. The decimal values may be used, provided that the - * compiler will convert from decimal to binary accurately enough - * to produce the hexadecimal values shown. - */ - static final double halF[] = { 0.5, -0.5, }, - twom1000 = 9.33263618503218878990e-302, // 2**-1000=0x01700000,0 - o_threshold = 7.09782712893383973096e+02, // 0x40862E42, 0xFEFA39EF - u_threshold = -7.45133219101941108420e+02, // 0xc0874910, 0xD52D3051 - ln2HI[] = { 6.93147180369123816490e-01, // 0x3fe62e42, 0xfee00000 - -6.93147180369123816490e-01, },// 0xbfe62e42, 0xfee00000 - ln2LO[] = { 1.90821492927058770002e-10, // 0x3dea39ef, 0x35793c76 - -1.90821492927058770002e-10, },// 0xbdea39ef, 0x35793c76 - invln2 = 1.44269504088896338700e+00, // 0x3ff71547, 0x652b82fe - P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E - P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93 - P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C - P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1 - P5 = 4.13813679705723846039e-08; // 0x3E663769, 0x72BEA4D0 - - static double _ieee754_exp(double x) // default IEEE double exp - { - double y, hi = 0, lo = 0, c, t; - int k = 0, xsb; - int hx; // Unsigned. - long xBits = Double.doubleToLongBits(x); - int __HIx = (int) (xBits >> 32); - int __LOx = (int) xBits; - - hx = __HIx; // high word of x - xsb = (hx >> 31) & 1; // sign bit of x - hx &= 0x7fffffff; // high word of |x| - - // filter out non-finite argument - if (hx >= 0x40862E42) { // if |x|>=709.78... - if (hx >= 0x7ff00000) - if (((hx & 0xfffff) | __LOx) != 0) - return x + x; // NaN - else - return (xsb == 0) ? x : 0.0; - if (x > o_threshold) - return huge * huge; // overflow - if (x < u_threshold) - return twom1000 * twom1000; // underflow - } - - // argument reduction - if (hx > 0x3fd62e42) { // if |x| > 0.5 ln2 - if (hx < 0x3FF0A2B2) { // and |x| < 1.5 ln2 - hi = x - ln2HI[xsb]; - lo = ln2LO[xsb]; - k = 1 - xsb - xsb; - } else { - k = (int) (invln2 * x + halF[xsb]); - t = k; - hi = x - t * ln2HI[0]; // t*ln2HI is exact here - lo = t * ln2LO[0]; - } - x = hi - lo; - } else if (hx < 0x3e300000) { // when |x|<2**-28 - if (huge + x > one) - return one + x;// trigger inexact - } else - k = 0; - - // x is now in primary range - t = x * x; - c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5)))); - if (k == 0) - return one - ((x * c) / (c - 2.0) - x); - else - y = one - ((lo - (x * c) / (2.0 - c)) - hi); - long yBits = Double.doubleToLongBits(y); - int __HIy = (int) (yBits >> 32); - if (k >= -1021) { - __HIy += (k << 20); // add k to y's exponent - yBits = ((__HIy & 0xFFFFFFFFL) << 32) | (yBits & 0xFFFFFFFFL); - y = Double.longBitsToDouble(yBits); - return y; - } else { - __HIy += ((k + 1000) << 20);// add k to y's exponent - yBits = ((__HIy & 0xFFFFFFFFL) << 32) | (yBits & 0xFFFFFFFFL); - y = Double.longBitsToDouble(yBits); - return y * twom1000; - } - } - -} \ No newline at end of file diff --git a/sources/src/main/java/net/minecraft/server/RegistryID.java b/sources/src/main/java/net/minecraft/server/RegistryID.java index 91861e32a..96c3568d3 100644 --- a/sources/src/main/java/net/minecraft/server/RegistryID.java +++ b/sources/src/main/java/net/minecraft/server/RegistryID.java @@ -2,6 +2,8 @@ package net.minecraft.server; import com.google.common.base.Predicates; import com.google.common.collect.Iterators; + +import java.util.BitSet; import java.util.Iterator; import javax.annotation.Nullable; @@ -24,7 +26,7 @@ public class RegistryID implements Registry { this.b = (K[]) (new Object[i]); this.c = new int[i]; this.d = (K[]) (new Object[i]); - this.usedIds = new io.akarin.api.internal.utils.FastBitSet(); // Akarin - 1.13 backport + this.usedIds = new BitSet(); // Akarin - 1.13 backport } public int getId(@Nullable K k0) {