diff --git a/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java b/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java new file mode 100644 index 000000000..8088090bb --- /dev/null +++ b/sources/src/main/java/io/akarin/api/internal/utils/FastBitSet.java @@ -0,0 +1,563 @@ +/* + * Javolution - Java(TM) Solution for Real-Time and Embedded Systems + * Copyright (C) 2012 - Javolution (http://javolution.org/) + * All rights reserved. + * + * Permission to use, copy, modify, and distribute this software is + * freely granted, provided that this notice is preserved. + */ +package io.akarin.api.internal.utils; + +import java.util.Arrays; +import java.util.BitSet; +import java.util.NoSuchElementException; +import java.util.PrimitiveIterator; +import java.util.Spliterator; +import java.util.Spliterators; +import java.util.stream.IntStream; +import java.util.stream.StreamSupport; + +import io.akarin.api.internal.utils.misc.MathLib; + +/** + * A high-performance bit-set integrated with the collection framework as a set of {@link Index indices} + * and obeying the collection semantic for methods such as {@link #size} (cardinality) or {@link #equals} + * (same set of indices).
+ * + * @author Jean-Marie Dautelle + * @version 7.0, September 13, 2015 + */ +public class FastBitSet extends BitSet implements Cloneable, java.io.Serializable { + + private static final long serialVersionUID = 0x700L; // Version. + private static final long[] ALL_CLEARED = new long[0]; + + /** Holds the bits (64 bits per long). */ + private long[] bits; + + /** + * Creates a new bit-set (all bits cleared). + */ + public FastBitSet() { + bits = ALL_CLEARED; + } + + /** + * Performs the logical AND operation on this bit set and the + * given bit set. This means it builds the intersection + * of the two sets. The result is stored into this bit set. + * + * @param that the second bit set. + */ + public final void and(FastBitSet that) { + long[] thatBits = that.toLongArray(); + int n = MathLib.min(this.bits.length, thatBits.length); + for (int i = 0; i < n; i++) { + this.bits[i] &= thatBits[i]; + } + for (int i = n; i < bits.length; i++) { + this.bits[i] = 0L; + } + } + + /** + * Performs the logical AND operation on this bit set and the + * complement of the given bit set. This means it + * selects every element in the first set, that isn't in the + * second set. The result is stored into this bit set. + * + * @param that the second bit set + */ + public final void andNot(FastBitSet that) { + long[] thatBits = that.toLongArray(); + int n = MathLib.min(this.bits.length, thatBits.length); + for (int i = 0; i < n; i++) { + this.bits[i] &= ~thatBits[i]; + } + } + + /** + * Returns the number of bits set to {@code true} (or the size of this + * set). + * + * @return the number of bits being set. + */ + public final int cardinality() { + int sum = 0; + for (int i = 0; i < bits.length; i++) { + sum += MathLib.bitCount(bits[i]); + } + return sum; + } + + public final void clear() { + bits = ALL_CLEARED; + } + + /** + * Removes the specified integer value from this set. That is + * the corresponding bit is cleared. + * + * @param bitIndex a non-negative integer. + * @throws IndexOutOfBoundsException if {@code index < 0} + */ + public final void clear(int bitIndex) { + int longIndex = bitIndex >> 6; + if (longIndex >= bits.length) + return; + bits[longIndex] &= ~(1L << bitIndex); + } + + /** + * Sets the bits from the specified {@code fromIndex} (inclusive) to the + * specified {@code toIndex} (exclusive) to {@code false}. + * + * @param fromIndex index of the first bit to be cleared. + * @param toIndex index after the last bit to be cleared. + * @throws IndexOutOfBoundsException if + * {@code (fromIndex < 0) | (toIndex < fromIndex)} + */ + public final void clear(int fromIndex, int toIndex) { + if ((fromIndex < 0) || (toIndex < fromIndex)) + throw new IndexOutOfBoundsException(); + int i = fromIndex >>> 6; + if (i >= bits.length) + return; // Ensures that i < _length + int j = toIndex >>> 6; + if (i == j) { + bits[i] &= ((1L << fromIndex) - 1) | (-1L << toIndex); + return; + } + bits[i] &= (1L << fromIndex) - 1; + if (j < bits.length) { + bits[j] &= -1L << toIndex; + } + for (int k = i + 1; (k < j) && (k < bits.length); k++) { + bits[k] = 0; + } + } + + @Override + public final FastBitSet clone() { + FastBitSet copy = new FastBitSet(); + copy.bits = this.bits.clone(); + return copy; + } + + //////////////////////////////////////////////////////////////////////////// + // BitSet Operations. + // + + /** + * Sets the bit at the index to the opposite value. + * + * @param bitIndex the index of the bit. + * @throws IndexOutOfBoundsException if {@code bitIndex < 0} + */ + public final void flip(int bitIndex) { + int i = bitIndex >> 6; + ensureCapacity(i + 1); + bits[i] ^= 1L << bitIndex; + } + + /** + * Sets a range of bits to the opposite value. + * + * @param fromIndex the low index (inclusive). + * @param toIndex the high index (exclusive). + * @throws IndexOutOfBoundsException if + * {@code (fromIndex < 0) | (toIndex < fromIndex)} + */ + public final void flip(int fromIndex, int toIndex) { + if ((fromIndex < 0) || (toIndex < fromIndex)) + throw new IndexOutOfBoundsException(); + int i = fromIndex >>> 6; + int j = toIndex >>> 6; + ensureCapacity(j + 1); + if (i == j) { + bits[i] ^= (-1L << fromIndex) & ((1L << toIndex) - 1); + return; + } + bits[i] ^= -1L << fromIndex; + bits[j] ^= (1L << toIndex) - 1; + for (int k = i + 1; k < j; k++) { + bits[k] ^= -1; + } + } + + /** + * Returns {@code true } if the specified integer is in + * this bit set; {@code false } otherwise. + * + * @param bitIndex a non-negative integer. + * @return the value of the bit at the specified index. + * @throws IndexOutOfBoundsException if {@code bitIndex < 0} + */ + public final boolean get(int bitIndex) { + int i = bitIndex >> 6; + return (i >= bits.length) ? false : (bits[i] & (1L << bitIndex)) != 0; + } + + /** + * Returns a new bit set composed of a range of bits from this one. + * + * @param fromIndex the low index (inclusive). + * @param toIndex the high index (exclusive). + * @return a context allocated bit set instance. + * @throws IndexOutOfBoundsException if + * {@code (fromIndex < 0) | (toIndex < fromIndex)} + */ + public final FastBitSet get(int fromIndex, int toIndex) { + if (fromIndex < 0 || fromIndex > toIndex) + throw new IndexOutOfBoundsException(); + FastBitSet bitSet = new FastBitSet(); + int length = MathLib.min(bits.length, (toIndex >>> 6) + 1); + bitSet.bits = new long[length]; + System.arraycopy(bits, 0, bitSet.bits, 0, length); + bitSet.clear(0, fromIndex); + bitSet.clear(toIndex, length << 6); + return bitSet; + } + + /** + * Sets the specified bit, returnstrue
+ * if previously set. */
+ public final boolean getAndSet(int bitIndex, boolean value) {
+ int i = bitIndex >> 6;
+ ensureCapacity(i + 1);
+ boolean previous = (bits[i] & (1L << bitIndex)) != 0;
+ if (value) {
+ bits[i] |= 1L << bitIndex;
+ } else {
+ bits[i] &= ~(1L << bitIndex);
+ }
+ return previous;
+ }
+
+ public int getAny(int index) {
+ return get(index) ? index : null;
+ }
+
+ /**
+ * Returns {@code true} if this bit set shares at least one
+ * common bit with the specified bit set.
+ *
+ * @param that the bit set to check for intersection
+ * @return {@code true} if the sets intersect; {@code false} otherwise.
+ */
+ public final boolean intersects(FastBitSet that) {
+ long[] thatBits = that.toLongArray();
+ int i = MathLib.min(this.bits.length, thatBits.length);
+ while (--i >= 0) {
+ if ((bits[i] & thatBits[i]) != 0) return true;
+ }
+ return false;
+ }
+
+ public final boolean isEmpty() {
+ return size() == 0;
+ }
+
+ /**
+ * Returns the logical number of bits actually used by this bit
+ * set. It returns the index of the highest set bit plus one.
+ *
+ * Note: This method does not return the number of set bits + * which is returned by {@link #size}
+ * + * @return the index of the highest set bit plus one. + */ + public final int length() { + trim(); + if (bits.length == 0) return 0; + return (bits.length << 6) - MathLib.numberOfLeadingZeros(bits[bits.length -1]); + } + + /** + * Returns the index of the next {@code false} bit, from the specified bit + * (inclusive). + * + * @param fromIndex the start location. + * @return the first {@code false} bit. + * @throws IndexOutOfBoundsException if {@code fromIndex < 0} + */ + public final int nextClearBit(int fromIndex) { + int offset = fromIndex >> 6; + long mask = 1L << fromIndex; + while (offset < bits.length) { + long h = bits[offset]; + do { + if ((h & mask) == 0) { return fromIndex; } + mask <<= 1; + fromIndex++; + } while (mask != 0); + mask = 1; + offset++; + } + return fromIndex; + } + + /** + * Returns the index of the next {@code true} bit, from the specified bit + * (inclusive). If there is none, {@code -1} is returned. + * The following code will iterates through the bit set:[code] + * for (int i=nextSetBit(0); i >= 0; i = nextSetBit(i+1)) { + * ... + * }[/code] + * + * @param fromIndex the start location. + * @return the first {@code false} bit. + * @throws IndexOutOfBoundsException if {@code fromIndex < 0} + */ + public final int nextSetBit(int fromIndex) { + int offset = fromIndex >> 6; + long mask = 1L << fromIndex; + while (offset < bits.length) { + long h = bits[offset]; + do { + if ((h & mask) != 0) + return fromIndex; + mask <<= 1; + fromIndex++; + } while (mask != 0); + mask = 1; + offset++; + } + return -1; + } + + /** + * Performs the logical OR operation on this bit set and the one specified. + * In other words, builds the union of the two sets. + * The result is stored into this bit set. + * + * @param that the second bit set. + */ + public final void or(FastBitSet that) { + long[] thatBits = (that instanceof FastBitSet) ? ((FastBitSet) that).bits + : that.toLongArray(); + ensureCapacity(thatBits.length); + for (int i = thatBits.length; --i >= 0;) { + bits[i] |= thatBits[i]; + } + } + + /** + * Returns the index of the previous {@code false} bit, + * from the specified bit (inclusive). + * + * @param fromIndex the start location. + * @return the first {@code false} bit. + * @throws IndexOutOfBoundsException if {@code fromIndex < -1} + */ + public final int previousClearBit(int fromIndex) { + int offset = fromIndex >> 6; + long mask = 1L << fromIndex; + while (offset >= 0) { + long h = bits[offset]; + do { + if ((h & mask) == 0) + return fromIndex; + mask >>= 1; + fromIndex--; + } while (mask != 0); + mask = 1L << 63; + offset--; + } + return -1; + } + + /** + * Returns the index of the previous {@code true} bit, from the + * specified bit (inclusive). If there is none, {@code -1} is returned. + * The following code will iterates through the bit set:[code] + * for (int i = length(); (i = previousSetBit(i-1)) >= 0; ) { + * ... + * }[/code] + * + * @param fromIndex the start location. + * @return the first {@code false} bit. + * @throws IndexOutOfBoundsException if {@code fromIndex < -1} + */ + public final int previousSetBit(int fromIndex) { + int offset = fromIndex >> 6; + long mask = 1L << fromIndex; + while (offset >= 0) { + long h = bits[offset]; + do { + if ((h & mask) != 0) + return fromIndex; + mask >>= 1; + fromIndex--; + } while (mask != 0); + mask = 1L << 63; + offset--; + } + return -1; + } + + public int removeAny(int index) { + return getAndSet(index, false) ? index : null; + } + + /** + * Adds the specified integer to this set (corresponding bit is set to + * {@code true}. + * + * @param bitIndex a non-negative integer. + * @throws IndexOutOfBoundsException if {@code bitIndex < 0} + */ + public final void set(int bitIndex) { + int i = bitIndex >> 6; + ensureCapacity(i + 1); + bits[i] |= 1L << bitIndex; + } + + /** + * Sets the bit at the given index to the specified value. + * + * @param bitIndex the position to set. + * @param value the value to set it to. + * @throws IndexOutOfBoundsException if {@code bitIndex < 0} + */ + public final void set(int bitIndex, boolean value) { + if (value) { + set(bitIndex); + } else { + clear(bitIndex); + } + } + + /** + * Sets the bits from the specified {@code fromIndex} (inclusive) to the + * specified {@code toIndex} (exclusive) to {@code true}. + * + * @param fromIndex index of the first bit to be set. + * @param toIndex index after the last bit to be set. + * @throws IndexOutOfBoundsException if + * {@code (fromIndex < 0) | (toIndex < fromIndex)} + */ + public final void set(int fromIndex, int toIndex) { + if ((fromIndex < 0) || (toIndex < fromIndex)) + throw new IndexOutOfBoundsException(); + int i = fromIndex >>> 6; + int j = toIndex >>> 6; + ensureCapacity(j + 1); + if (i == j) { + bits[i] |= (-1L << fromIndex) & ((1L << toIndex) - 1); + return; + } + bits[i] |= -1L << fromIndex; + bits[j] |= (1L << toIndex) - 1; + for (int k = i + 1; k < j; k++) { + bits[k] = -1; + } + } + + /** + * Sets the bits between from (inclusive) and to (exclusive) to the + * specified value. + * + * @param fromIndex the start range (inclusive). + * @param toIndex the end range (exclusive). + * @param value the value to set it to. + * @throws IndexOutOfBoundsException if {@code bitIndex < 0} + */ + public final void set(int fromIndex, int toIndex, boolean value) { + if (value) { + set(fromIndex, toIndex); + } else { + clear(fromIndex, toIndex); + } + } + + public final int size() { + return cardinality(); + } + + /** Returns the minimal lengthlong[] representation of this bitset.
+ *
+ * @return Array of longs representing this bitset
+ */
+ public final long[] toLongArray() {
+ trim();
+ return bits;
+ }
+
+ /**
+ * Performs the logical XOR operation on this bit set and the one specified.
+ * In other words, builds the symmetric remainder of the two sets
+ * (the elements that are in one set, but not in the other).
+ * The result is stored into this bit set.
+ *
+ * @param that the second bit set.
+ */
+ public final void xor(FastBitSet that) {
+ long[] thatBits = (that instanceof FastBitSet) ? ((FastBitSet) that).bits
+ : that.toLongArray();
+ ensureCapacity(thatBits.length);
+ for (int i = thatBits.length; --i >= 0;) {
+ bits[i] ^= thatBits[i];
+ }
+ }
+
+ // Checks capacity.
+ private void ensureCapacity(int capacity) {
+ if (bits.length < capacity) {
+ bits = Arrays.copyOf(bits, MathLib.max(bits.length * 2, capacity));
+ }
+ }
+
+ // Removes trailing zeros.
+ private void trim() {
+ int n = bits.length;
+ while ((--n >= 0) && (bits[n] == 0L)) {}
+ if (++n != bits.length) { // Trim.
+ bits = Arrays.copyOf(bits, n);
+ }
+ }
+
+ /**
+ * Returns a stream of indices for which this {@code BitSet}
+ * contains a bit in the set state. The indices are returned
+ * in order, from lowest to highest. The size of the stream
+ * is the number of bits in the set state, equal to the value
+ * returned by the {@link #cardinality()} method.
+ *
+ * The bit set must remain constant during the execution of the + * terminal stream operation. Otherwise, the result of the terminal + * stream operation is undefined. + * + * @return a stream of integers representing set indices + * @since 1.8 + */ + public IntStream stream() { + class BitSetIterator implements PrimitiveIterator.OfInt { + int next = nextSetBit(0); + + @Override + public boolean hasNext() { + return next != -1; + } + + @Override + public int nextInt() { + if (next != -1) { + int ret = next; + next = nextSetBit(next+1); + return ret; + } else { + throw new NoSuchElementException(); + } + } + } + + return StreamSupport.intStream( + () -> Spliterators.spliterator( + new BitSetIterator(), cardinality(), + Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED), + Spliterator.SIZED | Spliterator.SUBSIZED | + Spliterator.ORDERED | Spliterator.DISTINCT | Spliterator.SORTED, + false); + } +} \ No newline at end of file diff --git a/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java b/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java new file mode 100644 index 000000000..0d1333043 --- /dev/null +++ b/sources/src/main/java/io/akarin/api/internal/utils/misc/MathLib.java @@ -0,0 +1,1552 @@ +/* + * Javolution - Java(TM) Solution for Real-Time and Embedded Systems + * Copyright (C) 2012 - Javolution (http://javolution.org/) + * All rights reserved. + * + * Permission to use, copy, modify, and distribute this software is + * freely granted, provided that this notice is preserved. + */ +package io.akarin.api.internal.utils.misc; + +/** + *
An utility class providing {@link Realtime} implementation of the math library.
+ * + * @author Jean-Marie Dautelle + * @version 4.2, January 6, 2007 + */ +public final class MathLib { + + /** + * Default constructor. + */ + private MathLib() { + } + + /** + * Returns the 64 bits value corresponding to the specified unsigned value. + * + * @param value the 32 bits unsigned number. + * @return the corresponding long value. + */ + public static long unsigned(int value) { + return value & 0xFFFFFFFFL; + } + + /** + * Compares two unsigned 32-bits numbers. + * + * @param x the first unsigned 32-bits. + * @param y the second unsigned 32-bits + * @return {@code x < y} + */ + public static boolean unsignedLessThan(int x, int y) { + return (x ^ 0x80000000) < (y ^ 0x80000000); + } + + /** + * Compares two unsigned 64-bits numbers. + * + * @param x the first unsigned 64-bits. + * @param y the second unsigned 64-bits + * @return {@code x < y} + */ + public static boolean unsignedLessThan(long x, long y) { + return (x ^ 0x8000000000000000L) < (y ^ 0x8000000000000000L); + } + + /** + * 32 bits hashing function based on FNV-1 algorithm. + * + * @param intValue the 32 bits number input. + * @return the corresponding hash value. + * @see + * Wikipedia: Fowler–Noll–Vo hash function + */ + public static int hash(int intValue) { + final int FNV_OFFSET = (int) 2166136261L; + final int FNV_PRIME = (int) 16777619L; + int hash = FNV_OFFSET; + for (int i=0; i < 32; i +=8) { + int byteValue = (intValue >> i) & 0xFF; + hash *= FNV_PRIME; + hash ^= byteValue; + } + return hash; + } + + /** + * Interleaves the bits of the two specified integer values (Morton code). + * + * @param x the first positive integer value. + * @param y the second positive integer value. + * @return the corresponding morton code. + * @see + * Wikipedia: Z-order curve + * @see #deinterleave2D(int) + * @throws IllegalArgumentException if any of the arguments is negative + * or greater than 65535. + */ + public static int interleave(int x, int y) { + if (((x | y) & 0xFFFF0000) != 0) + throw new IllegalArgumentException("Overflow"); + return part1by1(x) | (part1by1(y) << 1); + } + + private static int part1by1(int n) { + n &= 0x0000ffff; + n = (n | (n << 8)) & 0x00FF00FF; + n = (n | (n << 4)) & 0x0F0F0F0F; + n = (n | (n << 2)) & 0x33333333; + n = (n | (n << 1)) & 0x55555555; + return n; + } + + /** + * Interleaves the bits of the three specified integer values (Morton code). + * + * @param x the first positive integer value. + * @param y the second positive integer value. + * @param y the third positive integer value. + * @return the corresponding morton code. + * @see + * Wikipedia: Z-order curve + * @see #deinterleave3D(int) + * @throws IllegalArgumentException if any of the arguments is negative + * or greater than 1023. + */ + public static int interleave(int x, int y, int z) { + if (((x | y | z) & 0xFFFFFC00) != 0) + throw new IllegalArgumentException("Overflow"); + return part1by2(x) | (part1by2(y) << 1) | (part1by2(z) << 2); + } + + private static int part1by2(int n) { + n &= 0x000003ff; + n = (n ^ (n << 16)) & 0xff0000ff; + n = (n ^ (n << 8)) & 0x0300f00f; + n = (n ^ (n << 4)) & 0x030c30c3; + n = (n ^ (n << 2)) & 0x09249249; + return n; + } + + /** + * Returns the number of bits in the minimal two's-complement representation of the specifiedint,
+ * excluding a sign bit. For positive int, this is equivalent to the number of bits
+ * in the ordinary binary representation. For negative int, it is equivalent to the number of bits of
+ * the positive value -(i + 1).
+ *
+ * @param i the int value for which the bit length is returned.
+ * @return the bit length of i.
+ */
+ public static int bitLength(int i) {
+ return bitLength((long) i);
+ }
+
+ /**
+ * Returns the number of bits in the minimal two's-complement representation of the specified long,
+ * excluding a sign bit. For positive long, this is equivalent to the number of bits
+ * in the ordinary binary representation. For negative long, it is equivalent to the number of bits
+ * of the positive value -(l + 1).
+ *
+ * @param l the long value for which the bit length is returned.
+ * @return the bit length of l.
+ */
+ public static int bitLength(long l) {
+ if (l < 0) l = -(l + 1);
+ return 64 - numberOfLeadingZeros(l);
+ }
+
+ /**
+ * Returns the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary
+ * representation of the specified 32 bits unsigned value. Returns 32 if the specified value is zero.
+ *
+ * @param unsigned the unsigned 32 bits value.
+ * @return the number of leading zero bits.
+ */
+ public static int numberOfLeadingZeros(int unsigned) { // From Hacker's Delight
+ if (unsigned == 0)
+ return 32;
+ int n = 1;
+ int x = unsigned;
+ if (x >>> 16 == 0) { n += 16; x <<= 16; }
+ if (x >>> 24 == 0) { n += 8; x <<= 8; }
+ if (x >>> 28 == 0) { n += 4; x <<= 4; }
+ if (x >>> 30 == 0) { n += 2; x <<= 2; }
+ n -= x >>> 31;
+ return n;
+ }
+
+ /**
+ * Returns the number of zero bits preceding the highest-order ("leftmost") one-bit in the two's complement binary
+ * representation of the specified 64 bits unsigned value. Returns 64 if the specified value is zero.
+ *
+ * @param unsigned the unsigned 64 bits value.
+ * @return the number of leading zero bits.
+ */
+ public static int numberOfLeadingZeros(long unsigned) { // From Hacker's Delight
+ if (unsigned == 0)
+ return 64;
+ int n = 1;
+ int x = (int)(unsigned >>> 32);
+ if (x == 0) { n += 32; x = (int)unsigned; }
+ if (x >>> 16 == 0) { n += 16; x <<= 16; }
+ if (x >>> 24 == 0) { n += 8; x <<= 8; }
+ if (x >>> 28 == 0) { n += 4; x <<= 4; }
+ if (x >>> 30 == 0) { n += 2; x <<= 2; }
+ n -= x >>> 31;
+ return n;
+ }
+
+ /**
+ * Returns the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary
+ * representation of the specified unsigned 32 bits value. Returns 32 if the specified value is zero.
+ *
+ * @param unsigned the unsigned 32 bits value.
+ * @return the number of trailing zero bits.
+ */
+ public static int numberOfTrailingZeros(int unsigned) { // From Hacker's Delight
+ int x, y;
+ if (unsigned == 0) return 32;
+ int n = 31;
+ x = y = unsigned;
+ y = x <<16; if (y != 0) { n = n -16; x = y; }
+ y = x << 8; if (y != 0) { n = n - 8; x = y; }
+ y = x << 4; if (y != 0) { n = n - 4; x = y; }
+ y = x << 2; if (y != 0) { n = n - 2; x = y; }
+ return n - ((x << 1) >>> 31);
+ }
+
+ /**
+ * Returns the number of zero bits following the lowest-order ("rightmost") one-bit in the two's complement binary
+ * representation of the specified unsigned 64 bits value. Returns 64 if the specified value is zero.
+ *
+ * @param unsigned the unsigned 64 bits value.
+ * @return the number of trailing zero bits.
+ */
+ public static int numberOfTrailingZeros(long unsigned) { // From Hacker's Delight
+ int x, y;
+ if (unsigned == 0) return 64;
+ int n = 63;
+ y = (int)unsigned; if (y != 0) { n = n -32; x = y; } else x = (int)(unsigned>>>32);
+ y = x <<16; if (y != 0) { n = n -16; x = y; }
+ y = x << 8; if (y != 0) { n = n - 8; x = y; }
+ y = x << 4; if (y != 0) { n = n - 4; x = y; }
+ y = x << 2; if (y != 0) { n = n - 2; x = y; }
+ return n - ((x << 1) >>> 31);
+ }
+
+ /**
+ * Returns the number of one-bits in the two's complement binary representation of the specified 32 bits unsigned
+ * value. This function is sometimes referred to as the population count.
+ *
+ * @param unsigned the 32 bits unsigned value.
+ * @return the number of one-bits in the two's complement binary representation of the specified value.
+ */
+ public static int bitCount(int unsigned) { // From Hacker's Delight
+ unsigned = (unsigned & 0x55555555) + ((unsigned >> 1) & 0x55555555);
+ unsigned = (unsigned & 0x33333333) + ((unsigned >> 2) & 0x33333333);
+ unsigned = (unsigned & 0x0F0F0F0F) + ((unsigned >> 4) & 0x0F0F0F0F);
+ unsigned = (unsigned & 0x00FF00FF) + ((unsigned >> 8) & 0x00FF00FF);
+ unsigned = (unsigned & 0x0000FFFF) + ((unsigned >>16) & 0x0000FFFF);
+ return unsigned;
+ }
+
+ /**
+ * Returns the number of one-bits in the two's complement binary representation of the specified 64 bits unsigned
+ * value. This function is sometimes referred to as the population count.
+ *
+ * @param unsigned the 64 bits unsigned value.
+ * @return the number of one-bits in the two's complement binary representation of the specified value.
+ */
+ public static int bitCount(long unsigned) { // From Hacker's Delight
+ unsigned = unsigned - ((unsigned >>> 1) & 0x5555555555555555L);
+ unsigned = (unsigned & 0x3333333333333333L)
+ + ((unsigned >>> 2) & 0x3333333333333333L);
+ unsigned = (unsigned + (unsigned >>> 4)) & 0x0f0f0f0f0f0f0f0fL;
+ unsigned = unsigned + (unsigned >>> 8);
+ unsigned = unsigned + (unsigned >>> 16);
+ unsigned = unsigned + (unsigned >>> 32);
+ return (int) unsigned & 0x7f;
+ }
+
+
+ /**
+ * Returns the number of digits of the decimal representation of the specified int value,
+ * excluding the sign character if any.
+ *
+ * @param i the int value for which the digit length is returned.
+ * @return String.valueOf(i).length() for zero or positive values;
+ * String.valueOf(i).length() - 1 for negative values.
+ */
+ public static int digitLength(int i) {
+ if (i >= 0)
+ return (i >= 100000) ? (i >= 10000000) ? (i >= 1000000000) ? 10
+ : (i >= 100000000) ? 9 : 8 : (i >= 1000000) ? 7 : 6
+ : (i >= 100) ? (i >= 10000) ? 5 : (i >= 1000) ? 4 : 3
+ : (i >= 10) ? 2 : 1;
+ if (i == Integer.MIN_VALUE)
+ return 10; // "2147483648".length()
+ return digitLength(-i); // No overflow possible.
+ }
+
+ /**
+ * Returns the number of digits of the decimal representation of the the specified long,
+ * excluding the sign character if any.
+ *
+ * @param l the long value for which the digit length is returned.
+ * @return String.valueOf(l).length() for zero or positive values;
+ * String.valueOf(l).length() - 1 for negative values.
+ */
+ public static int digitLength(long l) {
+ if (l >= 0)
+ return (l <= Integer.MAX_VALUE) ? digitLength((int) l)
+ : // At least 10 digits or more.
+ (l >= 100000000000000L) ? (l >= 10000000000000000L) ? (l >= 1000000000000000000L) ? 19
+ : (l >= 100000000000000000L) ? 18 : 17
+ : (l >= 1000000000000000L) ? 16 : 15
+ : (l >= 100000000000L) ? (l >= 10000000000000L) ? 14
+ : (l >= 1000000000000L) ? 13 : 12
+ : (l >= 10000000000L) ? 11 : 10;
+ if (l == Long.MIN_VALUE)
+ return 19; // "9223372036854775808".length()
+ return digitLength(-l);
+ }
+
+ /**
+ * Returns the closest double representation of the specified long number
+ * multiplied by a power of two.
+ *
+ * @param m the long multiplier.
+ * @param n the power of two exponent.
+ * @return m * 2n.
+ */
+ public static double toDoublePow2(long m, int n) {
+ if (m == 0)
+ return 0.0;
+ if (m == Long.MIN_VALUE)
+ return toDoublePow2(Long.MIN_VALUE >> 1, n + 1);
+ if (m < 0)
+ return -toDoublePow2(-m, n);
+ int bitLength = MathLib.bitLength(m);
+ int shift = bitLength - 53;
+ long exp = 1023L + 52 + n + shift; // Use long to avoid overflow.
+ if (exp >= 0x7FF)
+ return Double.POSITIVE_INFINITY;
+ if (exp <= 0) { // Degenerated number (subnormal, assume 0 for bit 52)
+ if (exp <= -54)
+ return 0.0;
+ return toDoublePow2(m, n + 54) / 18014398509481984L; // 2^54 Exact.
+ }
+ // Normal number.
+ long bits = (shift > 0) ? (m >> shift) + ((m >> (shift - 1)) & 1) : // Rounding.
+ m << -shift;
+ if (((bits >> 52) != 1) && (++exp >= 0x7FF))
+ return Double.POSITIVE_INFINITY;
+ bits &= 0x000fffffffffffffL; // Clears MSB (bit 52)
+ bits |= exp << 52;
+ return Double.longBitsToDouble(bits);
+ }
+
+ /**
+ * Returns the closest double representation of the specified long number multiplied by
+ * a power of ten.
+ *
+ * @param m the long multiplier.
+ * @param n the power of ten exponent.
+ * @return multiplier * 10n.
+ **/
+ public static double toDoublePow10(long m, int n) {
+ if (m == 0)
+ return 0.0;
+ if (m == Long.MIN_VALUE)
+ return toDoublePow10(Long.MIN_VALUE / 10, n + 1);
+ if (m < 0)
+ return -toDoublePow10(-m, n);
+ if (n >= 0) { // Positive power.
+ if (n > 308)
+ return Double.POSITIVE_INFINITY;
+ // Works with 4 x 32 bits registers (x3:x2:x1:x0)
+ long x0 = 0; // 32 bits.
+ long x1 = 0; // 32 bits.
+ long x2 = m & MASK_32; // 32 bits.
+ long x3 = m >>> 32; // 32 bits.
+ int pow2 = 0;
+ while (n != 0) {
+ int i = (n >= POW5_INT.length) ? POW5_INT.length - 1 : n;
+ int coef = POW5_INT[i]; // 31 bits max.
+
+ if (((int) x0) != 0)
+ x0 *= coef; // 63 bits max.
+ if (((int) x1) != 0)
+ x1 *= coef; // 63 bits max.
+ x2 *= coef; // 63 bits max.
+ x3 *= coef; // 63 bits max.
+
+ x1 += x0 >>> 32;
+ x0 &= MASK_32;
+
+ x2 += x1 >>> 32;
+ x1 &= MASK_32;
+
+ x3 += x2 >>> 32;
+ x2 &= MASK_32;
+
+ // Adjusts powers.
+ pow2 += i;
+ n -= i;
+
+ // Normalizes (x3 should be 32 bits max).
+ long carry = x3 >>> 32;
+ if (carry != 0) { // Shift.
+ x0 = x1;
+ x1 = x2;
+ x2 = x3 & MASK_32;
+ x3 = carry;
+ pow2 += 32;
+ }
+ }
+
+ // Merges registers to a 63 bits mantissa.
+ int shift = 31 - MathLib.bitLength(x3); // -1..30
+ pow2 -= shift;
+ long mantissa = (shift < 0) ? (x3 << 31) | (x2 >>> 1) : // x3 is 32 bits.
+ (((x3 << 32) | x2) << shift) | (x1 >>> (32 - shift));
+ return toDoublePow2(mantissa, pow2);
+
+ } else { // n < 0
+ if (n < -324 - 20)
+ return 0.0;
+
+ // Works with x1:x0 126 bits register.
+ long x1 = m; // 63 bits.
+ long x0 = 0; // 63 bits.
+ int pow2 = 0;
+ while (true) {
+
+ // Normalizes x1:x0
+ int shift = 63 - MathLib.bitLength(x1);
+ x1 <<= shift;
+ x1 |= x0 >>> (63 - shift);
+ x0 = (x0 << shift) & MASK_63;
+ pow2 -= shift;
+
+ // Checks if division has to be performed.
+ if (n == 0)
+ break; // Done.
+
+ // Retrieves power of 5 divisor.
+ int i = (-n >= POW5_INT.length) ? POW5_INT.length - 1 : -n;
+ int divisor = POW5_INT[i];
+
+ // Performs the division (126 bits by 31 bits).
+ long wh = (x1 >>> 32);
+ long qh = wh / divisor;
+ long r = wh - qh * divisor;
+ long wl = (r << 32) | (x1 & MASK_32);
+ long ql = wl / divisor;
+ r = wl - ql * divisor;
+ x1 = (qh << 32) | ql;
+
+ wh = (r << 31) | (x0 >>> 32);
+ qh = wh / divisor;
+ r = wh - qh * divisor;
+ wl = (r << 32) | (x0 & MASK_32);
+ ql = wl / divisor;
+ x0 = (qh << 32) | ql;
+
+ // Adjusts powers.
+ n += i;
+ pow2 -= i;
+ }
+ return toDoublePow2(x1, pow2);
+ }
+ }
+
+ private static final long MASK_63 = 0x7FFFFFFFFFFFFFFFL;
+
+ private static final long MASK_32 = 0xFFFFFFFFL;
+
+ private static final int[] POW5_INT = { 1, 5, 25, 125, 625, 3125, 15625,
+ 78125, 390625, 1953125, 9765625, 48828125, 244140625, 1220703125 };
+
+ /**/
+
+ /**
+ * Returns the closest long representation of the specified double number multiplied
+ * by a power of two.
+ *
+ * @param d the double multiplier.
+ * @param n the power of two exponent.
+ * @return d * 2n
+ * @throws ArithmeticException if the conversion cannot be performed
+ * (NaN, Infinity or overflow).
+ **/
+ public static long toLongPow2(double d, int n) {
+ long bits = Double.doubleToLongBits(d);
+ boolean isNegative = (bits >> 63) != 0;
+ int exp = ((int) (bits >> 52)) & 0x7FF;
+ long m = bits & 0x000fffffffffffffL;
+ if (exp == 0x7FF)
+ throw new ArithmeticException(
+ "Cannot convert to long (Infinity or NaN)");
+ if (exp == 0) {
+ if (m == 0)
+ return 0L;
+ return toLongPow2(d * 18014398509481984L, n - 54); // 2^54 Exact.
+ }
+ m |= 0x0010000000000000L; // Sets MSB (bit 52)
+ long shift = exp - 1023L - 52 + n; // Use long to avoid overflow.
+ if (shift <= -64)
+ return 0L;
+ if (shift >= 11)
+ throw new ArithmeticException("Cannot convert to long (overflow)");
+ m = (shift >= 0) ? m << shift : (m >> -shift)
+ + ((m >> -(shift + 1)) & 1); // Rounding.
+ return isNegative ? -m : m;
+ }
+
+ /**/
+
+ /**
+ * Returns the closest long representation of the specified double number multiplied
+ * by a power of ten.
+ *
+ * @param d the double multiplier.
+ * @param n the power of two exponent.
+ * @return d * 10n.
+ */
+ public static long toLongPow10(double d, int n) {
+ long bits = Double.doubleToLongBits(d);
+ boolean isNegative = (bits >> 63) != 0;
+ int exp = ((int) (bits >> 52)) & 0x7FF;
+ long m = bits & 0x000fffffffffffffL;
+ if (exp == 0x7FF)
+ throw new ArithmeticException(
+ "Cannot convert to long (Infinity or NaN)");
+ if (exp == 0) {
+ if (m == 0)
+ return 0L;
+ return toLongPow10(d * 1E16, n - 16);
+ }
+ m |= 0x0010000000000000L; // Sets MSB (bit 52)
+ int pow2 = exp - 1023 - 52;
+ // Retrieves 63 bits m with n == 0.
+ if (n >= 0) {
+ // Works with 4 x 32 bits registers (x3:x2:x1:x0)
+ long x0 = 0; // 32 bits.
+ long x1 = 0; // 32 bits.
+ long x2 = m & MASK_32; // 32 bits.
+ long x3 = m >>> 32; // 32 bits.
+ while (n != 0) {
+ int i = (n >= POW5_INT.length) ? POW5_INT.length - 1 : n;
+ int coef = POW5_INT[i]; // 31 bits max.
+
+ if (((int) x0) != 0)
+ x0 *= coef; // 63 bits max.
+ if (((int) x1) != 0)
+ x1 *= coef; // 63 bits max.
+ x2 *= coef; // 63 bits max.
+ x3 *= coef; // 63 bits max.
+
+ x1 += x0 >>> 32;
+ x0 &= MASK_32;
+
+ x2 += x1 >>> 32;
+ x1 &= MASK_32;
+
+ x3 += x2 >>> 32;
+ x2 &= MASK_32;
+
+ // Adjusts powers.
+ pow2 += i;
+ n -= i;
+
+ // Normalizes (x3 should be 32 bits max).
+ long carry = x3 >>> 32;
+ if (carry != 0) { // Shift.
+ x0 = x1;
+ x1 = x2;
+ x2 = x3 & MASK_32;
+ x3 = carry;
+ pow2 += 32;
+ }
+ }
+
+ // Merges registers to a 63 bits mantissa.
+ int shift = 31 - MathLib.bitLength(x3); // -1..30
+ pow2 -= shift;
+ m = (shift < 0) ? (x3 << 31) | (x2 >>> 1) : // x3 is 32 bits.
+ (((x3 << 32) | x2) << shift) | (x1 >>> (32 - shift));
+
+ } else { // n < 0
+
+ // Works with x1:x0 126 bits register.
+ long x1 = m; // 63 bits.
+ long x0 = 0; // 63 bits.
+ while (true) {
+
+ // Normalizes x1:x0
+ int shift = 63 - MathLib.bitLength(x1);
+ x1 <<= shift;
+ x1 |= x0 >>> (63 - shift);
+ x0 = (x0 << shift) & MASK_63;
+ pow2 -= shift;
+
+ // Checks if division has to be performed.
+ if (n == 0)
+ break; // Done.
+
+ // Retrieves power of 5 divisor.
+ int i = (-n >= POW5_INT.length) ? POW5_INT.length - 1 : -n;
+ int divisor = POW5_INT[i];
+
+ // Performs the division (126 bits by 31 bits).
+ long wh = (x1 >>> 32);
+ long qh = wh / divisor;
+ long r = wh - qh * divisor;
+ long wl = (r << 32) | (x1 & MASK_32);
+ long ql = wl / divisor;
+ r = wl - ql * divisor;
+ x1 = (qh << 32) | ql;
+
+ wh = (r << 31) | (x0 >>> 32);
+ qh = wh / divisor;
+ r = wh - qh * divisor;
+ wl = (r << 32) | (x0 & MASK_32);
+ ql = wl / divisor;
+ x0 = (qh << 32) | ql;
+
+ // Adjusts powers.
+ n += i;
+ pow2 -= i;
+ }
+ m = x1;
+ }
+ if (pow2 > 0)
+ throw new ArithmeticException("Overflow");
+ if (pow2 < -63)
+ return 0;
+ m = (m >> -pow2) + ((m >> -(pow2 + 1)) & 1); // Rounding.
+ return isNegative ? -m : m;
+ }
+
+ /**
+ * Returns the largest power of 2 that is less than or equal to the the specified positive value.
+ *
+ * @param d the double number.
+ * @return floor(Log2(abs(d)))
+ * @throws ArithmeticException if d <= 0 or d
+ * is NaN or Infinity.
+ **/
+ public static int floorLog2(double d) {
+ if (d <= 0)
+ throw new ArithmeticException("Negative number or zero");
+ long bits = Double.doubleToLongBits(d);
+ int exp = ((int) (bits >> 52)) & 0x7FF;
+ if (exp == 0x7FF)
+ throw new ArithmeticException("Infinity or NaN");
+ if (exp == 0)
+ return floorLog2(d * 18014398509481984L) - 54; // 2^54 Exact.
+ return exp - 1023;
+ }
+
+ /**
+ * Returns the largest power of 10 that is less than or equal to the the specified positive value.
+ *
+ * @param d the double number.
+ * @return floor(Log10(abs(d)))
+ * @throws ArithmeticException if d <= 0 or d
+ * is NaN or Infinity.
+ **/
+ public static int floorLog10(double d) {
+ int guess = (int) (LOG2_DIV_LOG10 * MathLib.floorLog2(d));
+ double pow10 = MathLib.toDoublePow10(1, guess);
+ if ((pow10 <= d) && (pow10 * 10 > d))
+ return guess;
+ if (pow10 > d)
+ return guess - 1;
+ return guess + 1;
+ }
+
+ private static final double LOG2_DIV_LOG10 = 0.3010299956639811952137388947;
+
+ /**
+ * The natural logarithm.
+ **/
+ public static final double E = 2.71828182845904523536028747135266;
+
+ /**
+ * The ratio of the circumference of a circle to its diameter.
+ **/
+ public static final double PI = 3.1415926535897932384626433832795;
+
+ /**
+ * Half the ratio of the circumference of a circle to its diameter.
+ **/
+ public static final double HALF_PI = 1.5707963267948966192313216916398;
+
+ /**
+ * Twice the ratio of the circumference of a circle to its diameter.
+ **/
+ public static final double TWO_PI = 6.283185307179586476925286766559;
+
+ /**
+ * Four time the ratio of the circumference of a circle to its diameter.
+ **/
+ public static final double FOUR_PI = 12.566370614359172953850573533118;
+
+ /**
+ * Holds {@link #PI} * {@link #PI}.
+ **/
+ public static final double PI_SQUARE = 9.8696044010893586188344909998762;
+
+ /**
+ * The natural logarithm of two.
+ **/
+ public static final double LOG2 = 0.69314718055994530941723212145818;
+
+ /**
+ * The natural logarithm of ten.
+ **/
+ public static final double LOG10 = 2.3025850929940456840179914546844;
+
+ /**
+ * The square root of two.
+ **/
+ public static final double SQRT2 = 1.4142135623730950488016887242097;
+
+ /**
+ * Not-A-Number.
+ **/
+ public static final double NaN = 0.0 / 0.0;
+
+ /**
+ * Infinity.
+ **/
+ public static final double Infinity = 1.0 / 0.0;
+
+ /**/
+ /**
+ * Converts an angle in degrees to radians.
+ *
+ * @param degrees the angle in degrees.
+ * @return the specified angle in radians.
+ **/
+ public static double toRadians(double degrees) {
+ return degrees * (PI / 180.0);
+ }
+
+ /**/
+
+ /**
+ * Converts an angle in radians to degrees.
+ *
+ * @param radians the angle in radians.
+ * @return the specified angle in degrees.
+ **/
+ public static double toDegrees(double radians) {
+ return radians * (180.0 / PI);
+ }
+
+ /**/
+
+ /**
+ * Returns the positive square root of the specified value.
+ *
+ * @param x the value.
+ * @return java.lang.Math.sqrt(x)
+ **/
+ public static double sqrt(double x) {
+ return Math.sqrt(x); // CLDC 1.1
+ }
+
+ /**/
+
+ /**
+ * Returns the remainder of the division of the specified two arguments.
+ *
+ * @param x the dividend.
+ * @param y the divisor.
+ * @return x - round(x / y) * y
+ **/
+ public static double rem(double x, double y) {
+ double tmp = x / y;
+ if (MathLib.abs(tmp) <= Long.MAX_VALUE)
+ return x - MathLib.round(tmp) * y;
+ else
+ return NaN;
+ }
+
+ /**/
+
+ /**
+ * Returns the smallest (closest to negative infinity) double value that is not less than the argument
+ * and is equal to a mathematical integer.
+ *
+ * @param x the value.
+ * @return java.lang.Math.ceil(x)
+ **/
+ public static double ceil(double x) {
+ return Math.ceil(x); // CLDC 1.1
+ }
+
+ /**/
+
+ /**
+ * Returns the largest (closest to positive infinity) double value that is not greater than the
+ * argument and is equal to a mathematical integer.
+ *
+ * @param x the value.
+ * @return java.lang.Math.ceil(x)
+ **/
+ public static double floor(double x) {
+ return Math.floor(x); // CLDC 1.1
+ }
+
+ /**/
+
+ /**
+ * Returns the trigonometric sine of the specified angle in radians.
+ *
+ * @param radians the angle in radians.
+ * @return java.lang.Math.sin(radians)
+ **/
+ public static double sin(double radians) {
+ return Math.sin(radians); // CLDC 1.1
+ }
+
+ /**/
+
+ /**
+ * Returns the trigonometric cosine of the specified angle in radians.
+ *
+ * @param radians the angle in radians.
+ * @return java.lang.Math.cos(radians)
+ **/
+ public static double cos(double radians) {
+ return Math.cos(radians); // CLDC 1.1
+ }
+
+ /**/
+
+ /**
+ * Returns the trigonometric tangent of the specified angle in radians.
+ *
+ * @param radians the angle in radians.
+ * @return java.lang.Math.tan(radians)
+ **/
+ public static double tan(double radians) {
+ return Math.tan(radians); // CLDC 1.1
+ }
+
+ /**
+ * Returns the arc sine of the specified value, in the range of -pi/2 through pi/2.
+ *
+ * @param x the value whose arc sine is to be returned.
+ * @return the arc sine in radians for the specified value.
+ **/
+ public static double asin(double x) {
+ if (x < -1.0 || x > 1.0)
+ return MathLib.NaN;
+ if (x == -1.0)
+ return -HALF_PI;
+ if (x == 1.0)
+ return HALF_PI;
+ return MathLib.atan(x / MathLib.sqrt(1.0 - x * x));
+ }
+
+ /**
+ * Returns the arc cosine of the specified value, in the range of 0.0 through pi.
+ *
+ * @param x the value whose arc cosine is to be returned.
+ * @return the arc cosine in radians for the specified value.
+ **/
+ public static double acos(double x) {
+ return HALF_PI - MathLib.asin(x);
+ }
+
+ /**
+ * Returns the arc tangent of the specified value,
+ * in the range of -pi/2 through pi/2.
+ *
+ * @param x the value whose arc tangent is to be returned.
+ * @return the arc tangent in radians for the specified value.
+ * @see
+ * Inverse Tangent -- from MathWorld
+ **/
+ public static double atan(double x) {
+ return MathLib._atan(x);
+ }
+
+ /**
+ * Returns the angle theta such that (x == cos(theta)) && (y == sin(theta)).
+ *
+ * @param y the y value.
+ * @param x the x value.
+ * @return the angle theta in radians.
+ * @see Wikipedia: Atan2
+ **/
+ public static double atan2(double y, double x) {
+ // From Wikipedia.
+ if (x > 0) return MathLib.atan(y / x);
+ if ((y >= 0) && (x < 0)) return MathLib.atan(y / x) + PI;
+ if ((y < 0) && (x < 0)) return MathLib.atan(y / x) - PI;
+ if ((y > 0) && (x == 0)) return PI / 2;
+ if ((y < 0) && (x == 0)) return -PI / 2;
+ return Double.NaN; // ((y == 0) && (x == 0))
+ }
+
+ /**
+ * Returns the hyperbolic sine of x.
+ *
+ * @param x the value for which the hyperbolic sine is calculated.
+ * @return (exp(x) - exp(-x)) / 2
+ **/
+ public static double sinh(double x) {
+ return (MathLib.exp(x) - MathLib.exp(-x)) * 0.5;
+ }
+
+ /**
+ * Returns the hyperbolic cosine of x.
+ *
+ * @param x the value for which the hyperbolic cosine is calculated.
+ * @return (exp(x) + exp(-x)) / 2
+ **/
+ public static double cosh(double x) {
+ return (MathLib.exp(x) + MathLib.exp(-x)) * 0.5;
+ }
+
+ /**
+ * Returns the hyperbolic tangent of x.
+ *
+ * @param x the value for which the hyperbolic tangent is calculated.
+ * @return (exp(2 * x) - 1) / (exp(2 * x) + 1)
+ **/
+ public static double tanh(double x) {
+ return (MathLib.exp(2 * x) - 1) / (MathLib.exp(2 * x) + 1);
+ }
+
+ /**
+ * Returns {@link #E e} raised to the specified power.
+ *
+ * @param x the exponent.
+ * @return ex
+ * @see
+ * Exponential Function -- from MathWorld
+ **/
+ public static double exp(double x) {
+ return MathLib._ieee754_exp(x);
+ }
+
+ /**
+ * Returns the natural logarithm (base {@link #E e}) of the specified
+ * value.
+ *
+ * @param x the value greater than 0.0.
+ * @return the value y such as ey == x
+ **/
+ public static double log(double x) {
+ return MathLib._ieee754_log(x);
+ }
+
+ /**
+ * Returns the decimal logarithm of the specified value.
+ *
+ * @param x the value greater than 0.0.
+ * @return the value y such as 10y == x
+ **/
+ public static double log10(double x) {
+ return log(x) * INV_LOG10;
+ }
+
+ private static double INV_LOG10 = 0.43429448190325182765112891891661;
+
+ /**
+ * Returns the value of the first argument raised to the power of the
+ * second argument.
+ *
+ * @param x the base.
+ * @param y the exponent.
+ * @return xy
+ **/
+ public static double pow(double x, double y) {
+ // Use close approximation (+/- LSB)
+ if ((x < 0) && (y == (int) y))
+ return (((int) y) & 1) == 0 ? pow(-x, y) : -pow(-x, y);
+ return MathLib.exp(y * MathLib.log(x));
+ }
+
+ /**
+ * Returns the closest int to the specified argument.
+ *
+ * @param f the float value to be rounded to a int
+ * @return the nearest int value.
+ **/
+ public static int round(float f) {
+ return (int) floor(f + 0.5f);
+ }
+
+ /**/
+
+ /**
+ * Returns the closest long to the specified argument.
+ *
+ * @param d the double value to be rounded to a
+ * long
+ * @return the nearest long value.
+ **/
+ public static long round(double d) {
+ return (long) floor(d + 0.5d);
+ }
+
+ /**
+ * Returns the absolute value of the specified int argument.
+ *
+ * @param i the int value.
+ * @return i or -i
+ */
+ public static int abs(int i) {
+ return (i < 0) ? -i : i;
+ }
+
+ /**
+ * Returns the absolute value of the specified long argument.
+ *
+ * @param l the long value.
+ * @return l or -l
+ */
+ public static long abs(long l) {
+ return (l < 0) ? -l : l;
+ }
+
+ /**
+ * Returns the absolute value of the specified float argument.
+ *
+ * @param f the float value.
+ * @return f or -f
+ **/
+ public static float abs(float f) {
+ return (f < 0) ? -f : f;
+ }
+
+ /**
+ * Returns the absolute value of the specified double argument.
+ *
+ * @param d the double value.
+ * @return d or -d
+ **/
+ public static double abs(double d) {
+ return (d < 0) ? -d : d;
+ }
+
+ /**
+ * Returns the greater of two int values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the larger of x and y.
+ */
+ public static int max(int x, int y) {
+ return (x >= y) ? x : y;
+ }
+
+ /**
+ * Returns the greater of two long values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the larger of x and y.
+ */
+ public static long max(long x, long y) {
+ return (x >= y) ? x : y;
+ }
+
+ /**
+ * Returns the greater of two float values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the larger of x and y.
+ **/
+ public static float max(float x, float y) {
+ return (x >= y) ? x : y;
+ }
+
+ /**
+ * Returns the greater of two double values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the larger of x and y.
+ **/
+ public static double max(double x, double y) {
+ return (x >= y) ? x : y;
+ }
+
+ /**
+ * Returns the smaller of two int values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the smaller of x and y.
+ */
+ public static int min(int x, int y) {
+ return (x < y) ? x : y;
+ }
+
+ /**
+ * Returns the smaller of two long values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the smaller of x and y.
+ */
+ public static long min(long x, long y) {
+ return (x < y) ? x : y;
+ }
+
+ /**
+ * Returns the smaller of two float values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the smaller of x and y.
+ **/
+ public static float min(float x, float y) {
+ return (x < y) ? x : y;
+ }
+
+ /**
+ * Returns the smaller of two double values.
+ *
+ * @param x the first value.
+ * @param y the second value.
+ * @return the smaller of x and y.
+ **/
+ public static double min(double x, double y) {
+ return (x < y) ? x : y;
+ }
+
+ ////////////////////////////////////////////////////////////////////////////
+ /* @(#)s_atan.c 1.3 95/01/18 */
+ /*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ *
+ */
+
+ /* atan(x)
+ * Method
+ * 1. Reduce x to positive by atan(x) = -atan(-x).
+ * 2. According to the integer k=4t+0.25 chopped, t=x, the argument
+ * is further reduced to one of the following intervals and the
+ * arctangent of t is evaluated by the corresponding formula:
+ *
+ * [0,7/16] atan(x) = t-t^3*(a1+t^2*(a2+...(a10+t^2*a11)...)
+ * [7/16,11/16] atan(x) = atan(1/2) + atan( (t-0.5)/(1+t/2) )
+ * [11/16.19/16] atan(x) = atan( 1 ) + atan( (t-1)/(1+t) )
+ * [19/16,39/16] atan(x) = atan(3/2) + atan( (t-1.5)/(1+1.5t) )
+ * [39/16,INF] atan(x) = atan(INF) + atan( -1/t )
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+ static final double atanhi[] = { 4.63647609000806093515e-01, // atan(0.5)hi 0x3FDDAC67, 0x0561BB4F
+ 7.85398163397448278999e-01, // atan(1.0)hi 0x3FE921FB, 0x54442D18
+ 9.82793723247329054082e-01, // atan(1.5)hi 0x3FEF730B, 0xD281F69B
+ 1.57079632679489655800e+00, // atan(inf)hi 0x3FF921FB, 0x54442D18
+ };
+
+ static final double atanlo[] = { 2.26987774529616870924e-17, // atan(0.5)lo 0x3C7A2B7F, 0x222F65E2
+ 3.06161699786838301793e-17, // atan(1.0)lo 0x3C81A626, 0x33145C07
+ 1.39033110312309984516e-17, // atan(1.5)lo 0x3C700788, 0x7AF0CBBD
+ 6.12323399573676603587e-17, // atan(inf)lo 0x3C91A626, 0x33145C07
+ };
+
+ static final double aT[] = { 3.33333333333329318027e-01, // 0x3FD55555, 0x5555550D
+ -1.99999999998764832476e-01, // 0xBFC99999, 0x9998EBC4
+ 1.42857142725034663711e-01, // 0x3FC24924, 0x920083FF
+ -1.11111104054623557880e-01, // 0xBFBC71C6, 0xFE231671
+ 9.09088713343650656196e-02, // 0x3FB745CD, 0xC54C206E
+ -7.69187620504482999495e-02, // 0xBFB3B0F2, 0xAF749A6D
+ 6.66107313738753120669e-02, // 0x3FB10D66, 0xA0D03D51
+ -5.83357013379057348645e-02, // 0xBFADDE2D, 0x52DEFD9A
+ 4.97687799461593236017e-02, // 0x3FA97B4B, 0x24760DEB
+ -3.65315727442169155270e-02, // 0xBFA2B444, 0x2C6A6C2F
+ 1.62858201153657823623e-02, // 0x3F90AD3A, 0xE322DA11
+ };
+
+ static final double one = 1.0, huge = 1.0e300;
+
+ static double _atan(double x) {
+ double w, s1, s2, z;
+ int ix, hx, id;
+ long xBits = Double.doubleToLongBits(x);
+ int __HIx = (int) (xBits >> 32);
+ int __LOx = (int) xBits;
+
+ hx = __HIx;
+ ix = hx & 0x7fffffff;
+ if (ix >= 0x44100000) { // if |x| >= 2^66
+ if (ix > 0x7ff00000 || (ix == 0x7ff00000 && (__LOx != 0)))
+ return x + x; // NaN
+ if (hx > 0)
+ return atanhi[3] + atanlo[3];
+ else
+ return -atanhi[3] - atanlo[3];
+ }
+ if (ix < 0x3fdc0000) { // |x| < 0.4375
+ if (ix < 0x3e200000) // |x| < 2^-29
+ if (huge + x > one)
+ return x;
+ id = -1;
+ } else {
+ x = MathLib.abs(x);
+ if (ix < 0x3ff30000) // |x| < 1.1875
+ if (ix < 0x3fe60000) { // 7/16 <=|x|<11/16
+ id = 0;
+ x = (2.0 * x - one) / (2.0 + x);
+ } else { // 11/16<=|x|< 19/16
+ id = 1;
+ x = (x - one) / (x + one);
+ }
+ else if (ix < 0x40038000) { // |x| < 2.4375
+ id = 2;
+ x = (x - 1.5) / (one + 1.5 * x);
+ } else { // 2.4375 <= |x| < 2^66
+ id = 3;
+ x = -1.0 / x;
+ }
+ }
+ // end of argument reduction
+ z = x * x;
+ w = z * z;
+ // break sum from i=0 to 10 aT[i]z**(i+1) into odd and even poly
+ s1 = z
+ * (aT[0] + w
+ * (aT[2] + w
+ * (aT[4] + w
+ * (aT[6] + w * (aT[8] + w * aT[10])))));
+ s2 = w * (aT[1] + w * (aT[3] + w * (aT[5] + w * (aT[7] + w * aT[9]))));
+ if (id < 0)
+ return x - x * (s1 + s2);
+ else {
+ z = atanhi[id] - ((x * (s1 + s2) - atanlo[id]) - x);
+ return (hx < 0) ? -z : z;
+ }
+ }
+
+ /**/
+ ////////////////////////////////////////////////////////////////////////////
+ /* @(#)e_log.c 1.3 95/01/18 */
+ /*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunSoft, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+ /* __ieee754_log(x)
+ * Return the logrithm of x
+ *
+ * Method :
+ * 1. Argument Reduction: find k and f such that
+ * x = 2^k * (1+f),
+ * where sqrt(2)/2 < 1+f < sqrt(2) .
+ *
+ * 2. Approximation of log(1+f).
+ * Let s = f/(2+f) ; based on log(1+f) = log(1+s) - log(1-s)
+ * = 2s + 2/3 s**3 + 2/5 s**5 + .....,
+ * = 2s + s*R
+ * We use a special Reme algorithm on [0,0.1716] to generate
+ * a polynomial of degree 14 to approximate R The maximum error
+ * of this polynomial approximation is bounded by 2**-58.45. In
+ * other words,
+ * 2 4 6 8 10 12 14
+ * R(z) ~ Lg1*s +Lg2*s +Lg3*s +Lg4*s +Lg5*s +Lg6*s +Lg7*s
+ * (the values of Lg1 to Lg7 are listed in the program)
+ * and
+ * | 2 14 | -58.45
+ * | Lg1*s +...+Lg7*s - R(z) | <= 2
+ * | |
+ * Note that 2s = f - s*f = f - hfsq + s*hfsq, where hfsq = f*f/2.
+ * In order to guarantee error in log below 1ulp, we compute log
+ * by
+ * log(1+f) = f - s*(f - R) (if f is not too large)
+ * log(1+f) = f - (hfsq - s*(hfsq+R)). (better accuracy)
+ *
+ * 3. Finally, log(x) = k*ln2 + log(1+f).
+ * = k*ln2_hi+(f-(hfsq-(s*(hfsq+R)+k*ln2_lo)))
+ * Here ln2 is split into two floating point number:
+ * ln2_hi + ln2_lo,
+ * where n*ln2_hi is always exact for |n| < 2000.
+ *
+ * Special cases:
+ * log(x) is NaN with signal if x < 0 (including -INF) ;
+ * log(+INF) is +INF; log(0) is -INF with signal;
+ * log(NaN) is that NaN with no signal.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+ static final double ln2_hi = 6.93147180369123816490e-01, // 3fe62e42 fee00000
+ ln2_lo = 1.90821492927058770002e-10, // 3dea39ef 35793c76
+ two54 = 1.80143985094819840000e+16, // 43500000 00000000
+ Lg1 = 6.666666666666735130e-01, // 3FE55555 55555593
+ Lg2 = 3.999999999940941908e-01, // 3FD99999 9997FA04
+ Lg3 = 2.857142874366239149e-01, // 3FD24924 94229359
+ Lg4 = 2.222219843214978396e-01, // 3FCC71C5 1D8E78AF
+ Lg5 = 1.818357216161805012e-01, // 3FC74664 96CB03DE
+ Lg6 = 1.531383769920937332e-01, // 3FC39A09 D078C69F
+ Lg7 = 1.479819860511658591e-01; // 3FC2F112 DF3E5244
+
+ static final double zero = 0.0;
+
+ static double _ieee754_log(double x) {
+ double hfsq, f, s, z, R, w, t1, t2, dk;
+ int k, hx, i, j;
+ int lx; // unsigned
+
+ long xBits = Double.doubleToLongBits(x);
+ hx = (int) (xBits >> 32);
+ lx = (int) xBits;
+
+ k = 0;
+ if (hx < 0x00100000) { // x < 2**-1022
+ if (((hx & 0x7fffffff) | lx) == 0)
+ return -two54 / zero; // log(+-0)=-inf
+ if (hx < 0)
+ return (x - x) / zero; // log(-#) = NaN
+ k -= 54;
+ x *= two54; // subnormal number, scale up x
+ xBits = Double.doubleToLongBits(x);
+ hx = (int) (xBits >> 32); // high word of x
+ }
+ if (hx >= 0x7ff00000)
+ return x + x;
+ k += (hx >> 20) - 1023;
+ hx &= 0x000fffff;
+ i = (hx + 0x95f64) & 0x100000;
+ xBits = Double.doubleToLongBits(x);
+ int HIx = hx | (i ^ 0x3ff00000); // normalize x or x/2
+ xBits = ((HIx & 0xFFFFFFFFL) << 32) | (xBits & 0xFFFFFFFFL);
+ x = Double.longBitsToDouble(xBits);
+ k += (i >> 20);
+ f = x - 1.0;
+ if ((0x000fffff & (2 + hx)) < 3) { // |f| < 2**-20
+ if (f == zero)
+ if (k == 0)
+ return zero;
+ else {
+ dk = (double) k;
+ return dk * ln2_hi + dk * ln2_lo;
+ }
+ R = f * f * (0.5 - 0.33333333333333333 * f);
+ if (k == 0)
+ return f - R;
+ else {
+ dk = (double) k;
+ return dk * ln2_hi - ((R - dk * ln2_lo) - f);
+ }
+ }
+ s = f / (2.0 + f);
+ dk = (double) k;
+ z = s * s;
+ i = hx - 0x6147a;
+ w = z * z;
+ j = 0x6b851 - hx;
+ t1 = w * (Lg2 + w * (Lg4 + w * Lg6));
+ t2 = z * (Lg1 + w * (Lg3 + w * (Lg5 + w * Lg7)));
+ i |= j;
+ R = t2 + t1;
+ if (i > 0) {
+ hfsq = 0.5 * f * f;
+ if (k == 0)
+ return f - (hfsq - s * (hfsq + R));
+ else
+ return dk * ln2_hi
+ - ((hfsq - (s * (hfsq + R) + dk * ln2_lo)) - f);
+ } else if (k == 0)
+ return f - s * (f - R);
+ else
+ return dk * ln2_hi - ((s * (f - R) - dk * ln2_lo) - f);
+ }
+
+ /**/
+ ////////////////////////////////////////////////////////////////////////////
+ /* @(#)e_exp.c 1.6 04/04/22 */
+ /*
+ * ====================================================
+ * Copyright (C) 2004 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+ /* __ieee754_exp(x)
+ * Returns the exponential of x.
+ *
+ * Method
+ * 1. Argument reduction:
+ * Reduce x to an r so that |r| <= 0.5*ln2 ~ 0.34658.
+ * Given x, find r and integer k such that
+ *
+ * x = k*ln2 + r, |r| <= 0.5*ln2.
+ *
+ * Here r will be represented as r = hi-lo for better
+ * accuracy.
+ *
+ * 2. Approximation of exp(r) by a special rational function on
+ * the interval [0,0.34658]:
+ * Write
+ * R(r**2) = r*(exp(r)+1)/(exp(r)-1) = 2 + r*r/6 - r**4/360 + ...
+ * We use a special Remes algorithm on [0,0.34658] to generate
+ * a polynomial of degree 5 to approximate R. The maximum error
+ * of this polynomial approximation is bounded by 2**-59. In
+ * other words,
+ * R(z) ~ 2.0 + P1*z + P2*z**2 + P3*z**3 + P4*z**4 + P5*z**5
+ * (where z=r*r, and the values of P1 to P5 are listed below)
+ * and
+ * | 5 | -59
+ * | 2.0+P1*z+...+P5*z - R(z) | <= 2
+ * | |
+ * The computation of exp(r) thus becomes
+ * 2*r
+ * exp(r) = 1 + -------
+ * R - r
+ * r*R1(r)
+ * = 1 + r + ----------- (for better accuracy)
+ * 2 - R1(r)
+ * where
+ * 2 4 10
+ * R1(r) = r - (P1*r + P2*r + ... + P5*r ).
+ *
+ * 3. Scale back to obtain exp(x):
+ * From step 1, we have
+ * exp(x) = 2^k * exp(r)
+ *
+ * Special cases:
+ * exp(INF) is INF, exp(NaN) is NaN;
+ * exp(-INF) is 0, and
+ * for finite argument, only exp(0)=1 is exact.
+ *
+ * Accuracy:
+ * according to an error analysis, the error is always less than
+ * 1 ulp (unit in the last place).
+ *
+ * Misc. info.
+ * For IEEE double
+ * if x > 7.09782712893383973096e+02 then exp(x) overflow
+ * if x < -7.45133219101941108420e+02 then exp(x) underflow
+ *
+ * Constants:
+ * The hexadecimal values are the intended ones for the following
+ * constants. The decimal values may be used, provided that the
+ * compiler will convert from decimal to binary accurately enough
+ * to produce the hexadecimal values shown.
+ */
+ static final double halF[] = { 0.5, -0.5, },
+ twom1000 = 9.33263618503218878990e-302, // 2**-1000=0x01700000,0
+ o_threshold = 7.09782712893383973096e+02, // 0x40862E42, 0xFEFA39EF
+ u_threshold = -7.45133219101941108420e+02, // 0xc0874910, 0xD52D3051
+ ln2HI[] = { 6.93147180369123816490e-01, // 0x3fe62e42, 0xfee00000
+ -6.93147180369123816490e-01, },// 0xbfe62e42, 0xfee00000
+ ln2LO[] = { 1.90821492927058770002e-10, // 0x3dea39ef, 0x35793c76
+ -1.90821492927058770002e-10, },// 0xbdea39ef, 0x35793c76
+ invln2 = 1.44269504088896338700e+00, // 0x3ff71547, 0x652b82fe
+ P1 = 1.66666666666666019037e-01, // 0x3FC55555, 0x5555553E
+ P2 = -2.77777777770155933842e-03, // 0xBF66C16C, 0x16BEBD93
+ P3 = 6.61375632143793436117e-05, // 0x3F11566A, 0xAF25DE2C
+ P4 = -1.65339022054652515390e-06, // 0xBEBBBD41, 0xC5D26BF1
+ P5 = 4.13813679705723846039e-08; // 0x3E663769, 0x72BEA4D0
+
+ static double _ieee754_exp(double x) // default IEEE double exp
+ {
+ double y, hi = 0, lo = 0, c, t;
+ int k = 0, xsb;
+ int hx; // Unsigned.
+ long xBits = Double.doubleToLongBits(x);
+ int __HIx = (int) (xBits >> 32);
+ int __LOx = (int) xBits;
+
+ hx = __HIx; // high word of x
+ xsb = (hx >> 31) & 1; // sign bit of x
+ hx &= 0x7fffffff; // high word of |x|
+
+ // filter out non-finite argument
+ if (hx >= 0x40862E42) { // if |x|>=709.78...
+ if (hx >= 0x7ff00000)
+ if (((hx & 0xfffff) | __LOx) != 0)
+ return x + x; // NaN
+ else
+ return (xsb == 0) ? x : 0.0;
+ if (x > o_threshold)
+ return huge * huge; // overflow
+ if (x < u_threshold)
+ return twom1000 * twom1000; // underflow
+ }
+
+ // argument reduction
+ if (hx > 0x3fd62e42) { // if |x| > 0.5 ln2
+ if (hx < 0x3FF0A2B2) { // and |x| < 1.5 ln2
+ hi = x - ln2HI[xsb];
+ lo = ln2LO[xsb];
+ k = 1 - xsb - xsb;
+ } else {
+ k = (int) (invln2 * x + halF[xsb]);
+ t = k;
+ hi = x - t * ln2HI[0]; // t*ln2HI is exact here
+ lo = t * ln2LO[0];
+ }
+ x = hi - lo;
+ } else if (hx < 0x3e300000) { // when |x|<2**-28
+ if (huge + x > one)
+ return one + x;// trigger inexact
+ } else
+ k = 0;
+
+ // x is now in primary range
+ t = x * x;
+ c = x - t * (P1 + t * (P2 + t * (P3 + t * (P4 + t * P5))));
+ if (k == 0)
+ return one - ((x * c) / (c - 2.0) - x);
+ else
+ y = one - ((lo - (x * c) / (2.0 - c)) - hi);
+ long yBits = Double.doubleToLongBits(y);
+ int __HIy = (int) (yBits >> 32);
+ if (k >= -1021) {
+ __HIy += (k << 20); // add k to y's exponent
+ yBits = ((__HIy & 0xFFFFFFFFL) << 32) | (yBits & 0xFFFFFFFFL);
+ y = Double.longBitsToDouble(yBits);
+ return y;
+ } else {
+ __HIy += ((k + 1000) << 20);// add k to y's exponent
+ yBits = ((__HIy & 0xFFFFFFFFL) << 32) | (yBits & 0xFFFFFFFFL);
+ y = Double.longBitsToDouble(yBits);
+ return y * twom1000;
+ }
+ }
+
+}
\ No newline at end of file
diff --git a/sources/src/main/java/net/minecraft/server/RegistryID.java b/sources/src/main/java/net/minecraft/server/RegistryID.java
index 89c490cec..abae69b1e 100644
--- a/sources/src/main/java/net/minecraft/server/RegistryID.java
+++ b/sources/src/main/java/net/minecraft/server/RegistryID.java
@@ -24,7 +24,7 @@ public class RegistryID